This presentation is an abbreviated version of the original PowerPoint presentation of June 23, 2005.

This version was presented at the Commissioners' Workshop of July 7, 2008.

Rehoboth Beach Effluent Disposal Study

Evaluation of Wastewater Discharge Alternatives

Workshop

June 23, 2005

Objectives

- Identify the most cost-effective and technically feasible solution for the City of Rehoboth Beach
- Identify the most cost-effective and technically feasible Regional solution

Approach

Evaluate the following discharge alternatives

- Rehoboth Beach Solutions
 - Land Application
 - Rapid Infiltration Beds
 - Underground Injection
 - Deep Injection Wells
 - Shallow Injection Wells
 - Ocean Outfall
- Regional (Rehoboth Beach and Sussex County)
 Ocean Outfall

Land Availability Study Watershed

Spray Irrigation Land Requirements

- Area required
 - Spray fields only
 496 acres
 - Total (including buffers and lagoon) 740 acres

• Not enough land available for purchase or lease

Spray Irrigation Cost Summary

Description	Cost
Rehoboth Beach WWTP Effluent Pump Station	\$1,000,000
Force Main to Lagoon (Holding Pond)	\$15,500,000
Spray Irrigation System	\$16,400,000
Land Purchase Price ⁽¹⁾	\$18,500,000
Construction Cost (Year 2004 Dollars) ⁽²⁾	\$51,400,000
Engineering, Construction Inspection, Administration, Legal and Financial Expenses @ 30%	\$9,900,000
Total Project Cost	\$61,300,000

Notes:

1. Land price estimate based on 740 acres @ \$25,000 per acre.

2. Cost includes 30 % contingency

Rapid Infiltration Beds (RIB)

Falmouth, MA – 0.8 mgd facility

Rapid Infiltration Beds Summary of Costs

Description	Cost
Rehoboth Beach WWTP Effluent Pump Station	\$1,000,000
Force Main to Holding Pond	\$15,500,000
Rapid Infiltration Bed System	\$18,900,000
Land Purchase Price ⁽¹⁾	\$7,350,000
Construction Cost (Year 2004 Dollars) ⁽²⁾	\$42,750,000
Engineering, Construction Inspection, Administration, Legal and Financial Expenses @ 30%	\$10,600,000
Total Project Cost	\$53,350,000

Notes:

1. Land price estimate based on 296 acres @ \$25,000 per acre.

2. Cost includes 30 % contingency. No contingency for land prices.

Shallow Injection Well Advantages /Disadvantages

Advantages

- Significantly less land requirements
- Recharge groundwater

Disadvantages

- Nutrient transport ultimately into Inland Bays
- Complex operations
- High level of pretreatment required (drinking water standards)
- Periodic maintenance required (acid cleaning)
- Unknown aquifer hydraulic capacity
- Significant risk of mounding based on RIB data
- Potential increase of nitrates in groundwater
- No salt water intrustion aquifers available
- Pilot borings required to characterize well and aquifer

DIW - Advantages/Disadvantages

Advantages

- Significantly less land requirement
- No potential for ultimate discharge to surface water
- Primary drinking water standards not required

Disadvantages

- Complex operations
- High level of pretreatment required including filtration and chlorination
- Periodic maintenance required
- Unknown subsurface below 900 ft
- Unknown aquifer hydraulic capacity
- Pilot borings required to characterize well and aquifer
- No qualified local contractor
- No groundwater recharge
- High Risk

Deep Well Injection Summary of Costs

Description	Cost		
Rehoboth Beach WWTP - Effluent Filters	\$2,680,000		
Rehoboth Beach WWTP – Effluent Pump Station	\$1,000,000		
Chlorination System	\$30,000		
Force Main to Well Field	\$1,090,000		
6,000 ft Deep Injection Well (20 wells @ \$4,000,000)	\$80,000,000		
Well Field Pipe Manifold	\$760,000		
Well Redevelopment	\$410,000		
Land Purchase Price ⁽¹⁾	\$1,050,000		
Construction Cost (Year 2004 Dollars) ⁽²⁾	\$87,020,000		
Engineering, Construction Inspection, Administration, Legal and Financial Expenses @ 30%	\$25,800,000		
Total Project Cost	\$112,800,000		

Notes:

1. Land price estimate based on 42 acres @ \$25,000 per acre

2. Cost includes 30 % contingency. No contingency on land purchase.

Ocean Outfall

- Location
- University of Delaware current model
- Mixing Model (CORMIX)
 - Rehoboth Beach only
 - Regional alternatives
 - Optimized diffuser design

Ocean Outfall – Advantages/Disadvantages

Advantages

- Minimal operation required (pumping)
- Minimal maintenance requirements (outfall inspections)
- No potential nutrient transport into Inland Bays
- Perceived as ultimate solution

Disadvantages

- Public acceptance
- Permitting
- No groundwater recharge

Ocean Outfall Force Main and Outfall

Ocean Outfall Summary of Costs

Rehoboth Beach Only

Description	Cost
Rehoboth Beach WWTP Effluent Filters	\$2,860,000
Rehoboth Beach WWTP Effluent Pump Station	\$1,500,000
Effluent Force Main	\$2,670,000
Ocean Outfall	\$22,100,000
<u>Construction Cost (Year 2004</u> <u>Dollars)⁽²⁾</u>	\$29,130,000
Engineering, Construction Inspection, Administration, Legal and Financial Expenses @ 30%	\$7,500,000
Total Project Cost	\$36,630,000

Regional Solution

Description	Cost		
Rehoboth Beach WWTP Improvements	\$4,360,000		
Wolfe Neck RWF Improvements	\$17,700,000		
Rehoboth Beach Force Main	\$1,290,000		
Wolfe Neck Force Main	\$3,710,000		
Force Main from Tie-In to Ocean Outfall	\$1,950,000		
Ocean Outfall	\$22,400,000		
<u>Construction Cost (Year</u> <u>2004 Dollars)⁽¹⁾</u>	\$51,400,000		
Engineering, Construction Inspection, Administration, Legal and Financial Expenses @ 30%	\$15,400,000		
Total Project Cost	\$66,800,000		

Alternative Comparison

	Land	Land		Underground Injection	
Issue	Application	Issue Application RIB Sha	Shallow	Deep	Outfall
Public Acceptance	+	0	-	-	-
Environmental Impacts	+	-	-	0	0
Nutrient Loading to Inland Bays	0	-	-	+	+
Permitting Issues	+	-	-	-	0
Reliability	0	0	-	-	+
Operability	0	+	-	-	+
Constructability	0	+	-	-	0
Long Term Solution	0	-	0	0	+
Groundwater Recharge	+	+	+	-	-
Land Requirement	-	-	0	0	+
Risk	+	0	-	-	+
Cost	0	0	0	-	+
Summary + 0 -	5 6 1	3 4 5	1 3 8	1 3 8	7 3 2

Objectives

- Identify the most cost-effective and technically feasible solution for the City of Rehoboth Beach
- Identify the most cost-effective and technically feasible Regional solution

Conclusions

Eliminate:

- Spray Irrigation
 - Land not available
- Rapid Infiltration Beds
 - Land not available
 - Nutrient discharge to Inland Bays
- Shallow Well Injection
 - No appropriate sites or aquifers
 - Nutrient discharge to Inland Bays
- Deep Well Injection
 - Excessive risk and cost

Recommended Alternative:

- Ocean Outfall
 - Lowest PW Value
 - Regional solution

<u>Changes</u> from 2005 to 2008:

•Three alternatives that involve land application by spray irrigation are on the table: Artesian, Tidewater, Sussex County.

•Sussex County voted to <u>not</u> partner with Rehoboth in a regional ocean outfall project.

-Stan