
SUSSEX COUNTY ENGINEERING DEPARTMENT Sussex County, Delaware

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project

October 2009 – FINAL DRAFT

WHITMAN, REQUARDT & ASSOCIATES, LLP

in association with

A REGIONAL PLANNING REPORT TO ASSESS A JOINT SUSSEX COUNTY/CITY OF REHOBOTH LAND APPLICATION PROJECT

TABLE OF CONTENTS October 2009 - FINAL DRAFT -

EX. EXECUTIVE SUMMARY

EX-1	Background	EX-1
EX-2	Purpose	EX-1
EX-3	Alternatives Evaluated	EX-2
EX-4	Cost Sharing Model	EX-3
	Evaluation of Alternatives	EX-4

1. INTRODUCTION

1.1	Background	1-1
1.2	Purpose of Report	1-2
1.3	Scope of Work	1-3

2. **REHOBOTH BEACH FLOWS AND LOADS**

2.1	Facility Summary	2-1
2.2	Current Flows	2-3
2.3	Projected Flows	2-7
	Influent Loads	2-8
	Current Effluent Performance	2-9
2.6	Projected Effluent Loading	2-12

3. WEST REHOBOTH FLOWS AND LOADS

	3.1	Facility Summary	3-1
	3.2	Current Flows	3-3
	3.3	Projected Flows	3-6
	3.4	Current Influent Loading	3-7
	3.5	Projected Influent Loading	3-8
	3.6	Current Effluent Performance	3-8
	3-7	Projected Effluent Performance	3-12
4.	WAST	EWATER TREATMENT AND DISPOSAL ALTERNATIVES	
	4.1	Introduction	4-1
A Region	al Planning	Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT	TOC

Page

4.2	Private Service Provider	4-2
4.3	Alternative 1	4-2
4.4	Alternative 2	4-5
4.5	Alternative 3	4-8
4.6	Alternative 4	4-10

5. REHOBOTH BEACH CONVEYANCE SYSTEM

5.1	Alternative 1: Raw Wastewater Conveyance	5-1
5.2	Alternative 2: Treated Effluent Conveyance	5-2
5.3	Force Main Design Criteria	5-2
5.4	Preliminary Cost Estimates	5-3

6. SPRAY IRRIGATION DISPOSAL ANALYSIS

6.1	Wolfe Neck Regional Wastewater Facility	6-1
6.2	Inland Bays Regional Wastewater Facility	6-2
6.3	IBRWF Hydrogeologic and Soils Testing Costs	6-4

7. WNRWF IMPROVEMENTS

7.1	Alternative 1 Disposal Capacity	7-1
7.2	Alternative 2 Disposal Capacity	7-3
7.3	Alternative 3 Disposal Capacity	7-8
7.4	Alternative 4 Disposal Capacity	7-9
7.5	Recommended Improvements for Alternative 1	7-9
7.6	Recommended Improvements for Alternative 2	7-12
7.7	Recommended Improvements for Alternatives 3 and 4	7-14
7.8	Wolfe Neck WRF Upgrade Preliminary Cost Estimates	7-16

8. WOLFE NECK BAYS CONVEYANCE SYSTEM

8.1	Altern	ative 1A, 2A, and 3	8-1
	8.1.1	Alignment Alternatives	8-1
	8.1.2	Force Main Hydraulics	8-2
	8.1.3	Pump Station Design	8-3
		Cost Estimates	8-4
	8.1.5	Summary	8-5
8.2		ative 1B and 2B	8-7
	8.2.1	Alignment Alternatives	8-7
	8.2.2	Force Main Hydraulics	8-7
	8.2.3	Cost Estimates	8-8
8.3	Altern	ative 4	8-9
	8.3.1	Alignment	8-9
		Force Main Hydraulics	8-9

	8.3.3 Force Main Hydraulics	8-11
	8.3.4 Cost Estimates	8-11
8.4	Pump Station Design	8-2
8.5	Preliminary Cost Estimates (Not Included)	8-3
8.6	Summary	8-3

9. IBRWF REGIONAL WASTEWATER FACILITY IMPACTS

9.1	Introduction	9-1
9.2	Scenario A	9-2
	Scenario B	9-5
	Scenario C	
	Scenario D	9-9
	Planned Improvements for the Inland Bays RWF	9-12

10. SUSSEX COUNTY/REHOBOTH BEACH COST SHARING MODEL 10-1

10.1	Annual Users Cost	10-5
	10.1.1 Capital Costs	10-5
	10.1.2 Project Costs and Contingencies	10-7
	10.1.3 Cost Share Percentages	10-8
	10.1.4 Operation and Maintenance Costs	10-9
10.2	Projected User Rates	10-10
10.3	Conclusions	10-12
	10.3.1 Alternatives 1A and 2A (County Spray Alternatives)	10-12
	10.3.2 Alternatives 1B and 2B (PWWP Alternatives)	10-12
	10.3.3 Alternatives 3 and 4/4B (Ocean Outfall Alternatives)	10-13

List of Figures

Figure EX-1	Inland Bays Planning Area
-------------	---------------------------

- Figure 1.1-1 Inland Bays Planning Area
- Figure 2.2-1 RBSTP Monthly Average Influent Flow (2005-2008)
- Figure 2.2-2 Individual Monthly Average Flows from Contributing Entities (2005-2008)
- Figure 2.5-1 Seasonal BOD₅ and TSS Effluent Performance (2005-2008)
- Figure 2.5-2 Seasonal TN and TP Effluent Performance (2005-2008)
- Figure 3.2-1 Influent Wastewater 2005-2008
- Figure 3.6-1 Seasonal BOD₅ and TSS Effluent Performance (2006-2008)
- Figure 3.6-2 Seasonal TN and TP Effluent Performance (2005 2008)
- Figure 4.3-1 Alternative 1 Wastewater Flow Schematic
- Figure 4.3-2 Alternative 1A NCPA Flow Distribution Diagram
- Figure 4.3-3 Alternative 1B NCPA Flow Distribution Diagram
- Figure 4.4-1 Alternative 2 Wastewater Flow Schematic
- Figure 4.4-2 Alternative 2A NCPA Flow Distribution Diagram
- Figure 4.4-3 Alternative 2B NCPA Flow Distribution Diagram
- Figure 4.5-1 Alternative 3 Wastewater Flow Schematic
- Figure 4.5-2 Alternative 3 NCPA Flow Distribution Diagram

- Figure 4.6-1 Alternative 4 NCPA Flow Distribution Diagram
- Figure 7.1-1Alternative 1 Effluent Projection
- Figure 7.2-12030 Summer Flows to WNRWF
- Figure 7.2-2 2030 Alternative 2 Summer Storage Required
- Figure 7.5-1 WNWRF Headworks and Transfer PS Flow Schematic
- Figure 8.1.1-1 WNWRF to INBRWF Alignment Options
- Figure 8.3-1 Combined Ocean Outfall
- Figure 9.2-1 Scenario A IBRWF Projected Flows and Expansion Timeline
- Figure 9.3-1 Scenario B IBRWF Projected Flows and Expansion Timeline
- Figure 9.4-1 Scenario C IBRWF Projected Flows and Expansion Timeline
- Figure 9.5-1 Scenario D IBRWF Projected Flows and Expansion
- Figure 10-1 Alternative 1 Wastewater Flow Schematic
- Figure 10-2 Alternative 1B Flow Distribution Diagram
- Figure 10-3 Alternative 2A Flow Distribution Diagram
- Figure 10-4 Alternative 2B Flow Distribution Diagram
- Figure 10-5 Alternative 3 Flow Distribution Diagram
- Figure 10-6 Alternative 4 Flow Distribution Diagram

List of Tables

- Table EX-1Impacts of Alternatives on City of Rehoboth User Rates
- Table EX-2
 Impacts of Alternatives on County Rates
- Table 2.1-1RBSTP Permit Summary
- Table 2.2-1Average Flow from Contributing Entities
- Table 2.2-2RBSTP Seasonal Monthly Influent Flowrates
- Table 2.2-3RBSTP Seasonal Flow Ratios
- Table 2.3-1Growth Projection Methodology
- Table 2.3-2
 RBSTP Projected Wastewater Influent Flows
- Table 2.4-1
 Influent Concentrations based no Typical Wastewater Strength
- Table 2.4-2Design Current & Projected Influent Loads
- Table 2.5-1
 Comparison of Actual Effluent Performance to Permit Limits
- Table 2.5-2Current Effluent Performance
- Table 2.5-3Effluent Nutrient Performance
- Table 2.6-1Projected Effluent Concentrations and Loadings
- Table 3.1-1Key Permit Requirements for Sprayed Effluent ⁽¹⁾
- Table 3.2-1Collection System Pump Stations Currently Connected Directly to the
WNRWF
- Table 3.2-2WNRWF Maximum Monthly Flow Data
- Table 3.2-3WNRWF Seasonal Monthly Influent Flowrates
- Table 3.2-4WNRWF Seasonal Flow Ratios
- Table 3.3-1WNRWF Projected Wastewater Influent Flows
- Table 3.4-1
 Current WNRWF Wastewater Influent Characteristics
- Table 3.4-2Current WNRWF Influent Loading
- Table 3.5-1Projected Influent Loading
- Table 3.6-1
 Comparison of Actual Effluent Performance to Permit Limits
- Table 3.6-2Current Effluent Performance
- Table 3.6-3Effluent Nitrogen Performance

- Table 3.7-2
 WNWRF Projected Effluent Performance
- Table 5.3-1Summary of Force Main Hydraulic Information
- Table 5.4-1
 Summary of Rehoboth to WNRWF Conveyance Costs
- Table 5.4-2Summary of Force Main Alignment Options
- Table 6.2-1IBRWF Capacity Estimates (4)
- Table 7.1-1
 Alternative 1 Disposal Capacity Summary
- Table 7.2-12030 Alternative 2 Disposal Capacity Summary
- Table 7.2-22030 Alternative 2 Projected TN Loading
- Table 7.4-1Alternative 3 Disposal Capacity Summary
- Table 7.5-1
 Alternative 3 Disposal Capacity Summary
- Table 7.5-1
 Alternative 1 Projected Influent Pumping to WNRWF
- Table 7.5-2Alternative 1 Flow Balance for 2030
- Table 7.5-3Alternative 1 Flow Balance for Ultimate Design
- Table 7.6-1
 Alternative 2 Projected Influent Pumping to WNRWF
- Table 7.6-2Alternative 2 Flow Balance for 2030
- Table 7.6-3
 Alternative 2 Flow Balance for Ultimate Design
- Table 7.7-1
 Alternatives and 4 Projected Influent Pumping to WNRWF
- Table 7.7-2Alternatives 3 and 4 Flow Balance for 2030
- Table 7.7-3
 Alternatives 3 and 4 Flow Balance for Ultimate Design
- Table 7.8-1
 Estimated Alternative 1 Phase 1 Headworks Probable Project Cost
- Table 7.8-2Estimated Alternatives 2, 3, and 4 Phase 1 Headworks Probable Project
Costs
- Table 7.8-3Estimated Alternative 4 Phase 1 Treatment Probable Project Costs
- Table 8.1-1Alternative 1A, 2A and 3 Hydraulics Summary
- Table 8.1-2Preliminary Pump Size
- Table 8.1-3Force Main Cost Summary
- Table 8.1-4Pumping Station Cost Summary
- Table 8.1-5Summary of WNRWF to IBWRF Alignment Options
- Table 8.1.2-1 Alternative 1B and 2B Hydraulics Summary
- Table 8.1.3-1Preliminary Pump Sizes
- Table 8.1.4-1 WNRWF to IBRWF Force Main Cost Summary
- Table 8.1.4-2Pump Station Cost Summary
- Table 8.1.5-1Summary of WNRWF to IBRWF Alignment Options
- Table 8.2.2-1Alternative 1B and 1 C Hydraulics Summary
- Table 8.2.3-1WNRWF to PWTP Force Main Cost Summary
- Table 8.3-1Combined Ocean Outfall
- Table 9.2-2IBRWF Expansion Phases and Disposal Capacity
- Table 9.2-1Projected 2030 Flows for IBRWF Contributing Entities
- Table 9.3-1
 Scenario B 2030 Projected Influent Flowrates to IBRWF
- Table 9.4-1
 Scenario C 2030 Projected Influent Flowrates to IBRWF
- Table 9.4-1Scenario D 2030 Projected Influent Flowrates to IBRWF
- Table 9.6-1Cost Summary for Phase 1 Expansion
- Table 9.6-2Cost Summary for Phase 2 Expansion
- Table 9.6-3Cost Summary for Phase 3A Expansion
- Table 10.1.1-1
 Summary of Capital Cost Components for Cost Sharing Analysis
- Table 10.1.2-1
 Project Cost Components for Cost Sharing Analysis
- Table 10.1-4-1O&M Components for Cost Sharing Analysis

TOC

Table 10.2-1	Impacts of Alternat	tives on City of Rehoboth User Rates
--------------	---------------------	--------------------------------------

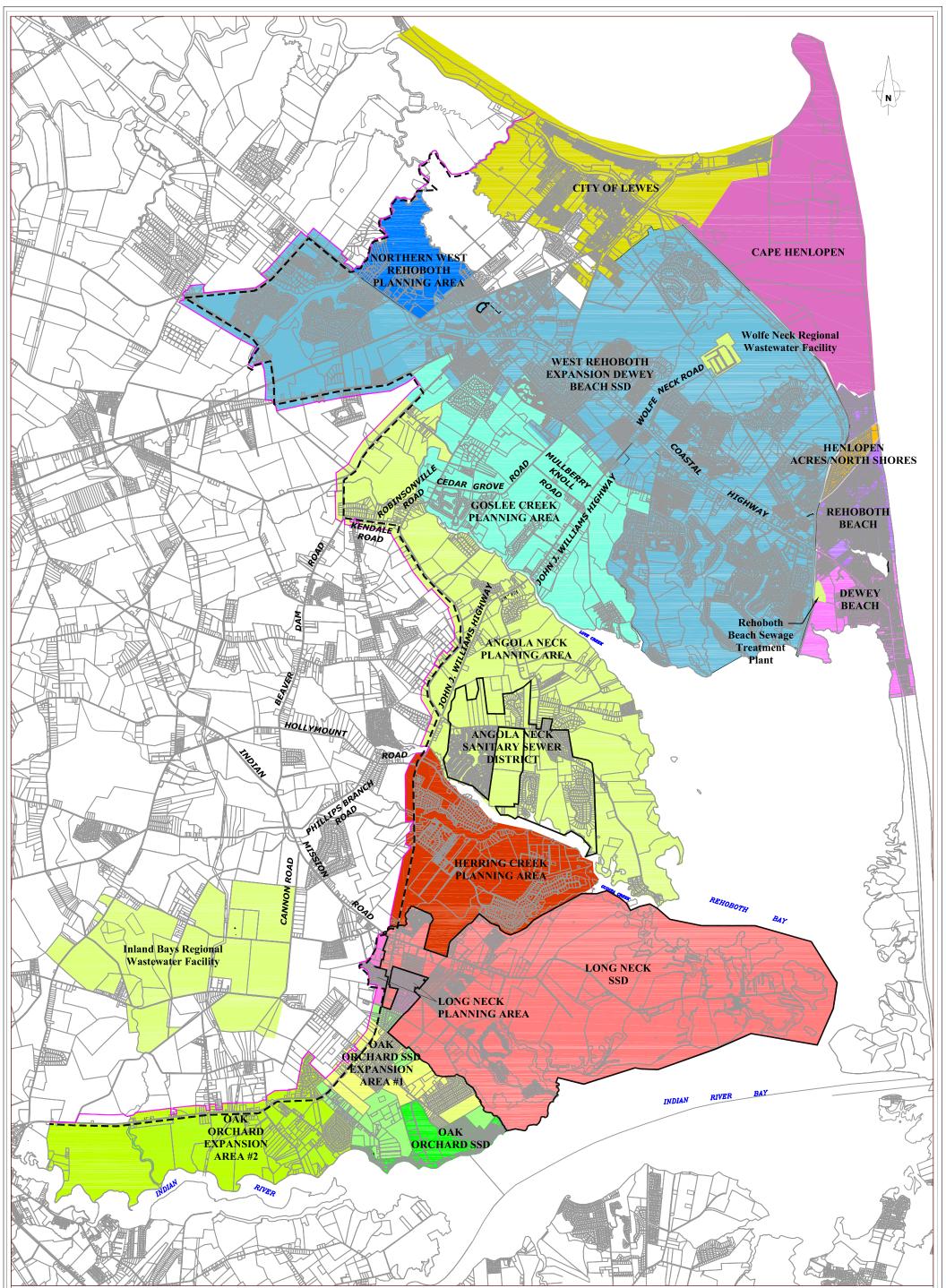
- Table 10.2-2Comparison of Financing Options
- Table 10.2-3Impacts of Alternatives on County Rates

Appendices

A	Rehoboth Sewage Treatment Plant Data and Future Flows
В	Wolfe Neck Regional Wastewater Facility Flow, Performance
	Data and Future Flows
С	North Coastal EDU Data and Projections
D	Rehoboth to Wolfe Neck Conveyance Cost Estimates
E	Wolfe Neck Conveyance Cost Estimates
F	Inland Bays Regional Wastewater Facility Cost Estimates
G	Sussex County/City of Rehoboth Cost Sharing Model

EX EXECUTIVE SUMMARY

EX-1 BACKGROUND


The City of Rehoboth Beach currently owns and operates the Rehoboth Beach Sewage Treatment Plant (RBSTP), which treats and disposes of wastewater into the Lewes-Rehoboth Canal. The Delaware Department of Natural Resources and Environmental Control (DNREC) and the City of Rehoboth have entered into a Consent Order to eliminate this discharge into the Lewes-Rehoboth Canal by 2014. The RBSTP currently serves the City of Rehoboth as well as the following County areas:

- Dewey Beach
- Henlopen Acres
- North Shores

Sussex County currently owns and operates both the Wolfe Neck Regional Wastewater Facility (WNRWF), and the Inland Bays Regional Wastewater Facility (IBRWF). These are both spray irrigation facilities. The WNRWF currently serves the West Rehoboth Expansion of the Dewey Beach Sanitary Sewer District. The IBRWF currently serves the Long Neck and Oak Orchard Sanitary Sewer Districts. Future service is being planned for various other planning areas within the overall Inland Bays Planning Area. The location of the RBSTP, WNRWF, IBRWF and the various districts and planning areas within the overall Inland Bays Planning Area are indicated on Figure EX-1.

EX-2 PURPOSE

The purpose of this report is to review options for a joint Sussex County/City of Rehoboth Beach Land Application Project in which the City of Rehoboth will send either raw wastewater or treated effluent to the County for treatment and disposal via land application at either the WNRWF or the IBRWF or some combination thereof.

Whitman, Requardt & Associates LLP

in association with

N:\13947-000\cadd\Civil\figure_EX-1.dwg

LEGEND

- Inland Bays Planning Area Boundary
- Environmentally Sensitive Development Area
- Sanitary Sewer District Boundary

INLAND BAYS PLANNING AREA

Figure EX-1 OCTOBER 2009

Alternatives implementing the use of a Private Wastewater Provider (PWWP) or combined ocean outfall have also been examined.

EX-3 ALTERNATIVES EVALUATED

There are seven possible alternatives being considered by the County to handle the wastewater in the NCPA and from the City of Rehoboth Beach. The possible solutions can be grouped into four general treatment and disposal alternatives:

- Alternative 1A/1B: The RBSTP shuts down and sends all of its raw wastewater to the WNRWF, which will treat as much wastewater as possible and send the excess to another facility to be treated. The excess wastewater will be treated by the County owned and operated Inland Bays Regional Wastewater Facility (Alt 1A) or a private wastewater provider (Alt 1B).
 - Alternative 2A/2B: The RBSTP remains in service and sends its treated effluent to the WNRWF for disposal via spray irrigation. A reduced amount of WNRWF influent wastewater from its service area will continue to be treated at that facility, with all excess being sent to either to the Inland Bays Regional Wastewater Facility (Alt 2A) or a private wastewater provider (Alt 2B).
 - Alternative 3: The RBSTP remains in service and discharges treated effluent via an ocean outfall. In this scenario, the County will continue treating and disposing wastewater via land application at its existing facilities. The WNRWF will remain in service and continue treating and disposing wastewater from its service area. Any excess flow to the WNRWF above the capacity of the facility will be sent to the IBRWF for treatment and disposal.
 - Alternative 4/4B: The RBSTP remains in service and discharges treated effluent via an ocean outfall. The County continues to treat wastewater via land

application at the WNRWF. The WNRWF will expand and upgrade its treatment capacity. Treated wastewater that exceeds the WNRWF disposal capacity will be pumped to the Rehoboth ocean outfall for disposal. Alternative 4 is based on 2030 maximum month flows. For cost sharing purposes, Alternative 4B is based on buildout maximum month flows.

EX-4 COST SHARING MODEL

A cost sharing model was developed for each alternative. This model was developed by estimating the initial capital costs, the project costs and contingencies, contract service costs associated with the private wastewater provider option and the long term operation and maintenance costs for each of the alternatives. Table EX-1 on the following page provides a summary of the resulting County/Rehoboth Costs, as well as the anticipated Rehoboth User Rates for each alternative. Table EX-2 provides the anticipated impacts to the County users.

	Dewey Beach User Rates		Henlopen Acres User Rates		City of Rehoboth Beach User Rates	
Alternative	Existing Rate	New Rate (1)	Existing Rate	New Rate (1)	Existing Rate	New Rate (2)
#2A	\$350	\$770	\$588	\$1,460	\$325	\$1,010
#2B	\$350	\$1,210	\$588	\$1,750	\$325	\$1,420
#3	\$350	\$540	\$588	\$1,030	\$325	\$630
#4	\$350	(3)	\$588	(3)	\$325	\$550
#4B	\$350	(3)	\$588	(3)	\$325	\$550

 Table EX-2 : Impacts of Alternatives on County Rates

Notes:

(1) New rates have been rounded to the nearest \$10 and are based on a 40 year loan at 5%,

- (2) New rates have been rounded to the nearest \$10 and are based on a 20 year loan at 4.4%,
- (3) Not evaluated to date

Alt.	Description	Total Project Cost (\$ M)	County Cost Share (\$ M)	Rehoboth Cost Share (\$ M)	Annual Capital Cost - Rehoboth	Annual Maintenance Cost- Rehoboth	Rehoboth User Rates
#1A	Raw Wastewater Pumped to WNRWF with Disposal at IBRWF	\$112	\$44	\$68	\$2,900,000	\$1,500,000	\$1,160
#1B	Raw Wastewater Pumped to WNRWF with Disposal at Private Service Provider	\$100	\$50	\$50	\$2,100,000	\$3,300,000	\$1,430
#2A	Treated Effluent Pumped to WNRWF with Disposal at IBRWF	\$103	\$48	\$54	\$2,300,000	\$1,500,000	\$1,010
#2B	Treated Effluent Pumped to WNRWF with Disposal at Private Service Provider	\$91	\$54	\$37	\$1,600,000	\$3,800,000	\$1,420
#3	Rehoboth Pumps to Ocean Outfall Alternative with County Pumping to IBRWF	\$94	\$64	\$30	\$1,300,000	\$1,100,000	\$630
#4	Rehoboth and County Pump to Common Outfall with County Continuing to use IBRWF for Southern Service Area (2030 Max. Month)	\$87	\$64	\$23	\$1,000,000	\$1,100,000	\$550
#4B	Rehoboth and County Pump to Common Outfall with County Continuing to use IBRWF for Southern Service Area (Buildout Max Month)	\$87	\$68	\$19	\$800,000	\$1,100,000	\$500

Table EX-1: Impacts of Alternatives on City of Rehoboth User Rates (1) (2)

Notes:

(1) All annual capital costs, maintenance costs, and users rates are based on 4.4% for 20 years.

(2) All total project costs, annual costs and user rates are rounded to the nearest \$1M, \$0.1M, and \$10 respectively.

EX-5 EVALUATION OF ALTERNATIVES

It was not the intent of this study to recommend one specific alternative, but rather provide the information which could be used as a part of the overall decision process. There are other non-economic, public perception, and regulatory issues that could influence the final outcome. Rather the intent is to provide a basic summary of pros and cons for each alternative, primarily on a cost basis. Based on the analysis performed the following observations can be made regarding potential City of Rehoboth costs:

- A public/private partnership with a PWWP (Alt 1B or 2 B) does not appear to be cost effective as compared to other alternatives.
- Alternative 2A (Treated Effluent) is the most cost effective spray irrigation alternative.
- Both ocean outfall alternatives and appear to be more cost effective than the spray alternatives, with the combined City/County outfall (Alt 4/4B) being the most cost effective.

For the County, the costs of for a combined ocean outfall (Alternative 4/4B) verses conveyance and treatment/disposal at the IBRWF (Alternative 3) are essentially equal. Factors that should be considered include:

- Alternative 4 would appear to be lower operation and maintenance for energy and force main maintenance issues.
- The County has already made a capital investment in land at the IBRWF. Depending on future flows per equivalent dwelling unit (EDU). If Alternative 4/4B is implemented, the County may have excess land, which could potentially be used to provide sewer service to new areas or partner with other entities.

- Alternative 4/4B would likely be a more reliable treatment option. Factors such as weather and variable soil conditions introduce higher uncertainties for spray irrigation.
- Alternative 4/4B would provide the County with multiple methods of disposal (land disposal and ocean discharge).
- Future upgrades beyond the current 20 year planning period will likely be higher for Alternative 3 as compare to Alternative 4/4B.

1. INTRODUCTION

1.1 BACKGROUND

The City of Rehoboth Beach currently owns and operates the Rehoboth Beach Sewage Treatment Plant (RBSTP), which treats and disposes of wastewater into the Lewes-Rehoboth Canal. The Delaware Department of Natural Resources and Environmental Control (DNREC) and the City of Rehoboth have entered into a Consent Order to eliminate this discharge into the Lewes-Rehoboth Canal by 2014. The RBSTP currently serves the City of Rehoboth as well as the following County areas:

- Dewey Beach
- Henlopen Acres
- North Shores

Sussex County currently owns and operates both the Wolfe Neck Regional Wastewater Facility (WNRWF), and the Inland Bays Regional Wastewater Facility (IBRWF). These facilities treat and dispose of wastewater from the following existing Sanitary Sewer Districts within the Inland Bays Planning Area via land application:

- West Rehoboth Expansion of the Dewey Beach Sanitary Sewer District
- Long Neck Sanitary Sewer District
- Oak Orchard Sanitary Sewer District

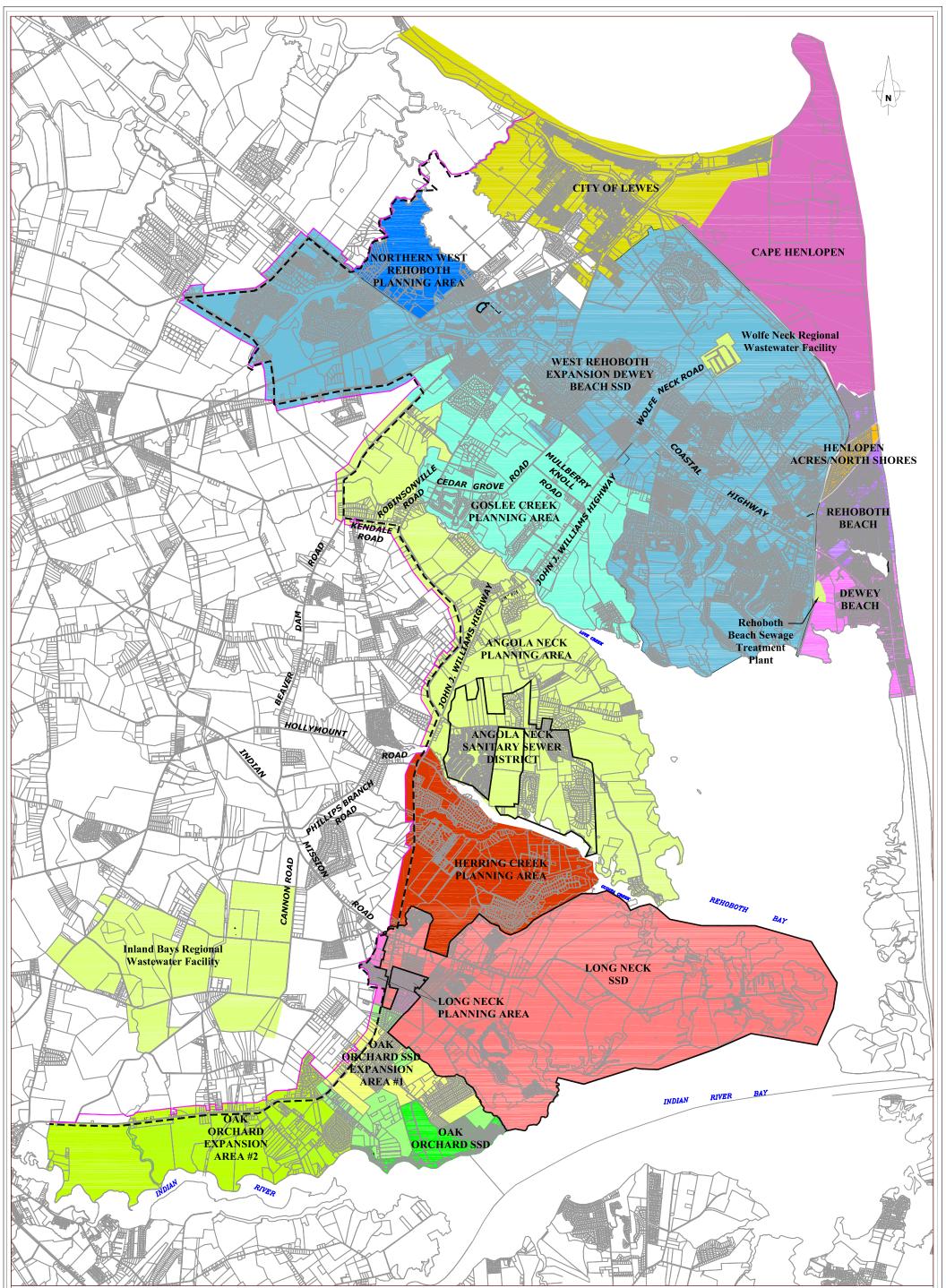
Immediate service (within the next 2 years) is being planned for the following areas within the Inland Bays Planning Area:

- Oak Orchard Expansion Area #1
- Angola Neck Sanitary Sewer District

Future service is being planned for the following planning areas within the overall Inland Bays Planning Area:

- Herring Creek
- Angola Neck
- Northern West Rehoboth
- Long Neck
- Oak Orchard Expansion Area #2
- Goslee Creek

The location of the RBSTP, WNRWF, IBRWF and the various districts and planning areas within the overall Inland Bays Planning Area are indicated on Figure 1.1-1.


1.2 PURPOSE OF REPORT

The purpose of this report is to review options for a joint Sussex County/City of Rehoboth Beach Land Application Project in which the City of Rehoboth will send either raw wastewater or treated effluent to the County for treatment and disposal via land application at either the WNRWF or the IBRWF or some combination thereof. Alternatives implementing the use of a Private Wastewater Provider (PWWP) or combined ocean outfall have also been examined. This report is being coordinated with a separate report being performed by the City of Rehoboth entitled "The Rehoboth Beach Wastewater Treatment Plant Alternative Discharge Cost Evaluation", herein referred to as the "Rehoboth Beach Alternative Discharge Evaluation".

1.3 SCOPE OF WORK

This report will address the following issues:

1) Analysis of the operating data for the RBSTP over the past three years (2006 though 2008).

Whitman, Requardt & Associates LLP

in association with

N:\13947-000\cadd\Civil\figure_EX-1.dwg

LEGEND

- Inland Bays Planning Area Boundary
- Environmentally Sensitive Development Area
- Sanitary Sewer District Boundary

INLAND BAYS PLANNING AREA

Figure 1.1-1 OCTOBER 2009

- 2) Estimate of future wastewater flows and loads from the RBSTP, including an estimate of the flow rate to be pumped to the WNRWF for treatment and disposal.
- Assessment of the conveyance system required to convey flows from the RBSTP to the WNRWF, including pumping station and force main sizes, force main alignments, as well as preliminary costs.
- Assessment of the improvements necessary at the WNRWF to accept flow from the RBSTP, including preliminary costs.
- Assessment of the conveyance system required to convey flows from the WNRWF to the IBRWF, including pumping station and force main sizes, force main alignments, as well as preliminary costs.
- 6) Analysis of spray irrigation disposal capacities at both the WNRWF and IBRWF, including a timeline for future expansion at IBRWF, as well as estimated costs to perform additional hydrogeological and soils tests required.
- Assessment of the impacts on future plant expansions at the WNRWF and IBRWF based on accepting flow from the RBSTP.
- 8) Development of a cost-sharing model to determine impact costs to each entity.
- 9) Analysis of private wastewater options in order to compare capital costs for the use of a private wastewater provider.

2. REHOBOTH BEACH FLOWS AND LOADS

The following chapter provides an overview of the existing Rehoboth Beach Sewage Treatment Plant (RBSTP), reviews historical flowrates and provides future flow and nutrient loading projections.

2.1 FACILITY SUMMARY

The RBSTP is owned and operated by the City of Rehoboth Beach. The facility is located at 20543 Roosevelt Street, on the bank of the Lewes-Rehoboth Canal.

The facility features an oxidation ditch system to achieve biological nutrient removal and is disinfected via a chlorine contact tank; final effluent is discharged into the Lewes-Rehoboth Canal. In addition to the City of Rehoboth Beach, the treatment plant services County customers from the areas of Dewey Beach, Henlopen Acres, and North Shores. The treatment facility was designed to treat a maximum month flow of 3.4 mgd. The City has an agreement with Sussex County to allocate 1.1 mgd of this for the Dewey Beach Sanitary Sewer District (DBSSD) and 0.075 mgd for the Henlopen Acres Sanitary Sewer District (HASSD) on a maximum weekly average basis.

Chapter 2

The RBSTP operates under State Permit No. WPCC 3084D/74, which is effective until September 20, 2010. The permit stipulates daily average and daily maximum effluent concentration limits for BOD₅, TSS and enterococcus coliform. A summary of the permitted parameters is shown in Table 2.1-1.

Parameter	Value
BOD ₅	19 mg/L Daily Average
	29 mg/L Daily Maximum
TSS	15 mg/L Daily Average
	23 mg/L Daily Maximum
Enterococcus Coliform	10 colonies/ 100 mL
Total Residual Chlorine	None Detectable
pH	6.0 Minimum
	9.0 Maximum
Note:	·

Table 2.1-1: RBSTP Permit Summary

1. State Permit No. WPCC 3084D/74, Expiration Date: September 20, 2010.

In addition to the effluent limits listed in Table 2.1-1, the permit indicates that the total nitrogen (TN) discharged shall not exceed 24,300 lbs/yr and the total phosphorus (TP) discharges shall not exceed 5,308 lbs/yr. These loading rates are equivalent to a TN

concentration of 2.35 mg/L and a TP concentration of 0.51 mg/L at the maximum month design capacity.

The 2.35 mg/L TN concentration is below the commonly accepted limit of technology; it is part of the consent order in effect until the RBSTP is required to stop discharging into the Lewes- Rehoboth Canal. The Delaware DNREC recently established Total Maximum Daily Loads (TMDLs) for the Inland Bays. The TMDL is described in the Delaware Pollution Control Strategy titled, "Regulations of the Pollution Control Watersheds, Delaware," dated November 2008. As part of these TMDLs, the RBSTP must stop discharging to the Lewes-Rehoboth Canal by December 31, 2014. These TMDLs will no longer apply when the RBSTP stops discharging into the canal and conveys flow for spray irrigation disposal or to an ocean outfall.

Available flow and loading data for the RBSTP were analyzed to asses the current influent conditions and estimate future loads. Influent flows are assumed to be equal to effluent flows because no influent data were available. Population projections and wastewater characteristics were used to estimate wastewater flows and loads which served as the basis for design in evaluating operational alternatives.

For this study, the years from 2005 through 2008 were evaluated. 2005 was included as a representation of a high flow year, either from population flux or weather patterns. Plant data are included in Appendix A.

2.2 CURRENT FLOWS

The wastewater treated at the RBSTP comes primarily from domestic and commercial sources (e.g., retail stores and restaurants). Wastewater is conveyed to the treatment facility by four force mains; two from the City of Rehoboth Beach and two directly from the DBSSD. Wastewater from HASSD and North Shores are conveyed to the RBSTP through the City of Rehoboth Beach's collection and conveyance system. Despite

treating wastewater from three other districts, the City of Rehoboth Beach contributes the majority of the wastewater. Figure 2.2-1 shows the total flow for the RBSTP, Figure 2.2-2 shows the flows of the individual contributing entities.

Figure 2.2-1 RBSTP Monthly Average Influent Flow (2005-2008)

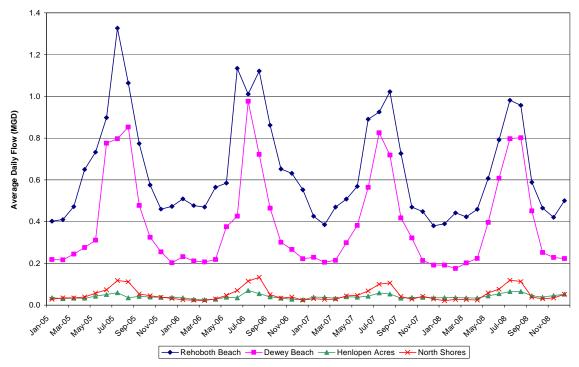


Figure 2.2-2: Individual Monthly Average Flows from Contributing Entities (2005-2008)

The maximum month ADF over the period of analysis was 2.3 mgd and occurred in July 2005. Monthly flow data dating back to 1988 was examined and the July 2005 flow was exceeded only once over this period (July 2000). Table 2.2-1 shows the average flow contribution for each of the contributing entities.

Entity	Four Year Average Flow ⁽¹⁾ (mgd)	Max Month Average Flow ⁽²⁾ (mgd)	Contributing EDUs	Max Month gpd/ EDU
City of RB	0.65	1.3	Not Available	N/A
DBSSD	0.39	0.80	3,612	224
HASSD	0.04	0.06	205	298
North Shores	0.05	0.12	Not Available	N/A
Total	1.1	2.3	Not Available	N/A

 Table 2.2-1: Average Flows from Contributing Entities

Notes:

1. The period of study includes 2005 through 2008.

2. July 2005 flows were shown. This was the maximum month flow over the 4 year period of review.

As shown in Table 2.2-1, the City of Rehoboth Beach currently contributes about 57% of the flow to the RBSTP.

Each year, there has been more than twice as much influent wastewater flow during the summer (defined as June, July and August) as compared to the winter (defined as December, January and February). Table 2.2-2 summarizes the seasonal flows; Table 2.2-3 summarizes the seasonal flow ratios.

Year	Max Month ADF (mgd)	Summer ADF (mgd)	Winter ADF (mgd)	Annual ADF (mgd)
2005	2.3	2.1	0.69	1.2
2006	2.2	2.0	0.77	1.2
2007	1.9	1.8	0.73	1.1
2008	2.0	1.8	0.65	1.1
Average	2.1	1.9	0.72	1.1

 Table 2.2-2:
 RBSTP Seasonal Monthly Influent Flowrates

Note:

1. Winter is defined as December, January, February; summer is defined as June, July, August.

Year	Summer / Winter Ratio	Max Month / Annual Ratio	Max Month / Summer Month Ratio
2005	3.0	1.9	1.1
2006	2.5	1.8	1.1
2007	2.4	1.8	1.1
2008	2.8	1.8	1.1
Average	2.7	1.8	1.1

Table 2.2-3: RBSTP Seasonal Flow Ratios

Note:

1. Winter is defined as December, January, February; summer is defined as June, July, August.

The seasonal nature of the flow is attributed to the service area's close proximity to popular vacation coastline. The majority of the residents live in the area only during the summer months and on weekends in the spring and fall. As a result, significantly larger average wastewater flows are received during the summer months compared to the rest of the year. Due to the seasonal nature of this community, the summer average and summer

maximum flows were examined to determine the current operating state of the facility and to estimate future operating conditions.

2.3 **PROJECTED FLOWS**

Equivalent dwelling units (EDUs) were used for this analysis instead of the total number of customers because it converts different types of customers (single-family residential, multi-unit residential, institutional, commercial, and industrial) into the equivalent number of single-family residential users. The EDUs were only available for two of the four contributing entities (DBSSD and HASSD). The maximum month flow contribution for the DBSSD and HASSD was 224 gpd/EDU and 298 gpd/EDU, respectively. For planning purposes, 225 gpd/EDU was used to project flow contributions from future EDUs added to the sewage collection system.

To develop growth projections, EDU data from 2003-2008 was analyzed for Dewey Beach and Henlopen Acres. These areas gained a total of 69 EDUs over the time span, approximately 14 EDUs per year. The EDUs added per year was proportionally scaled up to include the entire RBSTP service area. By this method, the annual rate of growth is 0.39%. Table 2.3-1 summarizes the calculations and methodology for future projections; detailed calculations are in Appendix A. Table 2.3-2 summarizes the influent flow projections for 2030 and the ultimate buildout.

Growth Determination			
EDUs Gained from HA	5		
EDUs Gained From DB	64		
Total EDUs Gained 2003-2008	69		
EDUs Gained/Year	14		
HA & DB Average Annual Flows (MG/yr)	158		
Total RBSTP Average Annual Flows (MG/yr)	414		
Percent Contribution of HA & DB to RBSTP (%)	38%		
Estimated EDUs Gained by RBSTP per Year (Proportional)			
Notes:			

 Table 2.3-1: Growth Projection Methodology

1. Data used for calculations provided by the Sussex County Engineering Department (SCED) and City of Rehoboth Beach.

Design Period	Max Month ADF (mgd)	Summer ADF (mgd) ⁽³⁾	Winter ADF (mgd) ⁽⁴⁾	Annual ADF (mgd)
Current	$2.30^{(1)}$	1.91	0.72	1.10
Year 2030	$2.50^{(2)}$	2.30	0.93	1.40
Ultimate Design	3.40	3.10	1.30	1.90

Table 2.3-2: RBSTP Projected Wastewater Influent Flows

Notes:

1. Current Max Month ADF based on July 2005 observed flow.

2. Year 2030 max month ADF based on current max month ADF + 37 EDU/year multiplied by 225 gpd/ EDU.

3. Summer ADF based on applying observed 1.10 average ratio of max month to average summer ADFs from Table 2.2-2 to projected max month ADF.

4. Winter ADF based on applying observed 2.7 average ratio of summer to winter ADFs from Table 2.2-2 to projected summer ADF.

2.4 INFLUENT LOADS

The RBSTP does not regularly sample influent wastewater for pollutants. Because of this, it is not recommended that facility modifications be designed based on the influent wastewater characteristics provided by the treatment plant. Instead, it is recommended that more typical influent wastewater characteristics published in the Metcalf & Eddy <u>Wastewater Engineering</u> design manual be used as the basis for design modifications. The average and maximum month concentrations the design will be based on are summarized in Table 2.4-1.

Parameter	Average Month	Maximum Month
rarameter	(mg/L)	(mg/L)
BOD ₅	190	250
TSS	210	270
TKN	40	52
NH ₄ -N	25	33
TP	7	9

 Table 2.4-1: Influent Concentrations Based on Typical Wastewater Strength

Notes:

1.

Average month characteristics are based on medium strength wastewater characterization as presented in Metcalf and Eddy, 4th Edition Table 3-15.

2. The maximum month to average month constituent loading ratio is expected to be about 1.3:1 (Metcalf & Eddy, Figure 3-8, 4th Edition).

Using the Metcalf & Eddy assumptions for wastewater concentrations, the current and projected influent loadings are summarized in Table 2.4-2.

Design Period	BOD ₅ (lbs/day)		TSS (lbs/day)		TKN (lbs/day)		NH ₄ -N (lbs/day)		TP (lbs/day)	
Design reriou	Avg.	Max.	Avg.	Max.	Avg.	Max.	Avg.	Max.	Avg.	Max.
Current (2005-2008)	3,700	4,800	4,000	5,200	770	1,000	480	630	130	170
2030 Projected	4,000	5,200	4,400	5,600	830	1,100	520	690	150	190
Ultimate Flow	5,400	7,100	6,000	7,700	1,100	1,500	710	940	200	260

Table 2.4-2: Design Current & Projected Influent Loads

Notes:

1. Average loading based on average concentrations shown in Table 2.4-1 at current max month ADF of 2.3 mgd from Table 2.3-2.

2. Maximum loading rate based on maximum concentrations shown in Table 2.4-1 at current max month ADF of 2.3 mgd from Table 2.3-1.

2.5 CURRENT EFFLUENT PERFORMANCE

The RBSTP is subject to permit limits for conventional pollutants as well as nutrients. The RBSTP has consistently produced a final effluent with concentrations well below the permit requirements. A summary of the reported values for effluent monitored pollutants is presented in Table 2.5-1. Table 2.5-2 summarizes the effluent performance of both conventional and nutrient pollutants for the study period. The seasonal performance of the plant for conventional pollutants is shown in Figure 2.5-1. Complete performance data are provided in Appendix A.

 Table 2.5-1: Comparison of Actual Effluent Performance to Permit Limits

Parameter	Permit Limit	Current Value ⁽¹⁾
BOD ₅ – Daily Average	19 mg/L	1.7 mg/L
BOD ₅ – Daily Maximum	29 mg/L	4.3 mg/L
TSS – Daily Average	15 mg/L	3.2 mg/L
TSS – Daily Maximum	23 mg/L	11.0 mg/L

Notes:

1. Data were provided by the City of Rehoboth Beach. Reported values are a flow weighted average over the period of study (2005-2008).

	BOD ₅	TSS	TN	ТР
Year	(mg/L)	(mg/L)	(mg/L)	(mg/L)
2005	1.7	3.4	6.0	0.50
2006	1.4	2.8	4.4	0.34
2007	1.6	3.6	5.1	0.38
2008	2.0	3.0	6.0	0.39
Average	1.7	3.2	5.4	0.44

Notes:

1. Data were provided by the City of Rehoboth Beach. Reported values are an annual flow weighted average.

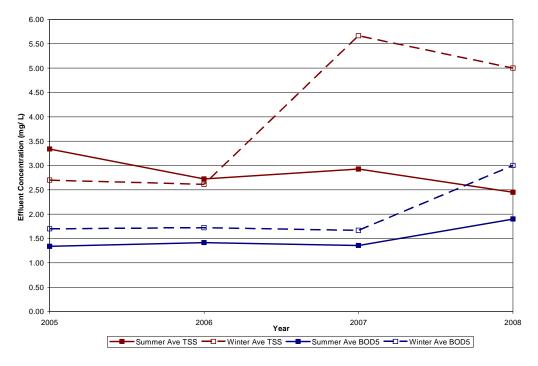


Figure 2.5-1: Seasonal BOD₅ and TSS Effluent Performance (2005-2008)

The effluent BOD_5 concentration is consistently higher in the winter than in the summer; approximately 25% higher in the winter from 2005-2008. While not as consistent, the effluent TSS concentration is generally higher in the winter as well; approximately 29% higher in the winter for the same period. Since the average daily influent flowrate is significantly lower in the winter, it follows that the temperature has a greater impact on the process than the amount of flow.

For total nitrogen and total phosphorus, the facility is required to meet annual loading limits of 24,300 lbs and 5,308 lbs, respectively. The RBSTP has also consistently met these TMDL requirements. The nutrient performance is summarized as annual loading in Table 2.5-3 and seasonal concentrations in Figure 2.5-2.

Year	Total Nitrogen (lbs/yr)	Total Phosphorus (lbs/yr)
2005	22,000	1,800
2006	15,900	1,400
2007	16,600	1,300
2008	19,400	1,500
Average	18,500	1,500
Notas		

Table 2.5-3: Effluent Nutrient Performance

Notes: 1.

Data were provided by the City of Rehoboth Beach.

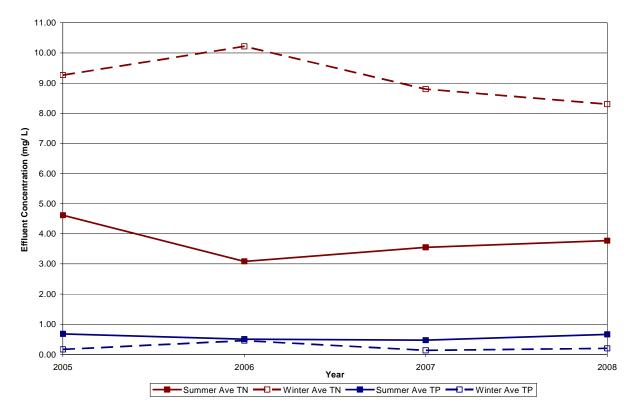


Figure 2.5-2: Seasonal TN and TP Effluent Performance (2005-2008)

Similarly to BOD_5 and TSS, the effluent TN concentration is consistently higher in the winter. This is most likely due to the sensitivity of nitrification to low temperatures. Conversely, the effluent TP concentration is lower during the winter. The process for phosphorus removal is less impacted by low temperatures than nitrogen removal and benefits from a lower flow rate.

2.6 **PROJECTED EFFLUENT LOADING**

Based on population and flow growth projections, future effluent performance and effluent annual loading were estimated. The RBSTP is expected to continue to perform well at its rated capacity of 3.4 mgd. For planning purposes, effluent concentrations for BOD₅ and TSS are estimated to increase slightly to 8.0 mg/ L and 4.0 mg/L, respectively, at projected 2030 flows. For the land application alternative evaluated in this report, effluent TN and TP concentrations from the RBSTP are estimated to increase under ultimate flows to 10 mg/L and 1.0 mg/L, respectively. Table 2.6-1 summarizes future performance estimations.

Table 2.6-1:	Projected Effluent Concentrations and Loading
--------------	--

Design	-	ge Daily (mgd)	Total Nitrogen		Total Phosphorus		BOD ₅		TSS	
Period	Max Month	Annual	Conc. (mg/L)	Annual Loading (lbs/yr)	Conc. (mg/L)	Annual Loading (lbs/yr)	Conc. (mg/L)	Annual Loading (lbs/yr)	Conc. (mg/L)	Annual Loading (lbs/yr)
Current (2005- 2008)	2.30	1.10	5.4	18,500	0.4	1,500	1.7	5,900	3.2	10,900
2030 Projected	2.50	1.35	8.0	33,000	1.0	4,100	2.5	10,300	4.0	16,500
Ultimate Flow (Permitted Capacity)	3.40	1.85	10.0	56,000	1.0	5,600	4.0	22,500	6.0	34,000

3. WEST REHOBOTH FLOWS & LOADS

The following chapter provides an overview of the existing Wolfe Neck Regional Wastewater Facility (WNRWF), reviews historical flowrates and provides future flow and nutrient loading projections.

3.1 FACILITY SUMMARY

The West Rehoboth Beach Expansion (WRE) of the Dewey Beach Sanitary Sewer District (DBSSD) is served by the WNRWF. The facility is located at the east end of County Road 270, approximately 1.2 miles east of Route 1 on the former Dodd farm parcel.

The WNRWF includes a headworks, partially mixed aerated treatment lagoons, an effluent storage lagoon, chlorine disinfection, and an effluent spray irrigation system. The facility has a spray irrigation permit (State Permit No. LTS 5005-95-05) issued by DNREC, which allows land application of treated effluent to spray fields.

The facility is permitted to accept up to 4.0 mgd as a monthly average influent flow from May through September and 2.23 mgd as a monthly average influent flow from October through April. The permit states that the average monthly quantity of effluent discharged to the spray irrigation fields shall not exceed 3.1 mgd. The permit also indicates that the weekly effluent applied to the spray irrigation fields shall not exceed 2.6 inches per week for the months of June and September, 2.75 inches per week for the months of July and August, and 2.5 inches per week from October 1 to May 31 with a maximum field application rate of 0.25 inches per hour. A 24-hour rest period is required between applications. The permit prohibits the application of wastewater during periods of rainfall, snowfall and when the ground is frozen. Monitoring requirements include frequency of sampling and sampling procedures for specific groundwater and soil parameters.

The permit stipulates daily average and daily maximum effluent concentration limits for BOD₅, TSS and fecal coliform. A summary of these effluent concentrations is provided in Table 3.1-1.

Parameter	Value		
BOD ₅	50 mg/L Daily Average		
TSS	90 mg/L Daily Average		
Fecal Coliform	200 colonies/100 mL		
Fecal Comorni	Daily Average		
Total Residual Chlorine	1.0 mg/L Minimum		
Total Residual Chiofilie	4.0 mg/L Maximum		
all	5.0 Minimum		
рН	9.0 Maximum		
Note:			

 Table 3.1-1: Key Permit Requirements for Spraved Effluent⁽¹⁾

Note:

State Permit No. LTS 5005-95-05, Expiration Date: October 13, 2010. 1.

In addition to the effluent limits listed in Table 3.1-1, the permit indicates that the total nitrogen load applied to any field shall not exceed 396 lbs/yr/acre, including any supplemental fertilizer. Based on the 319 irrigated acres currently utilized at the permitted capacity of 3.1 mgd, this loading rate is equivalent to an effluent concentration of 13.4 mg/L TN, assuming no supplemental fertilizers are applied.

Available flow and loading data for the WNRWF were analyzed to asses the current influent conditions and estimate future loads. Population projections and wastewater characteristics were used to estimate wastewater flows and loads, which served as the basis for design in evaluating operational alternatives.

For this study, the years from 2005 through 2008 were evaluated. Plant data are included in Appendix B.

3.2 CURRENT FLOWS

Like the RBSTP, wastewater comes primarily from domestic and commercial sources. Pump Station Nos. 196 and 210 supply wastewater directly to the headworks through a common 30-inch forcemain. Currently, approximately 98% of the influent flow comes from Pump Station No. 210. The pumps at this station are controlled by variable frequency drives (VFDs). To serve the developing Hawkeye/Cadbury subdivision and surrounding areas, the County plans to increase the capacity of Pump Station No. 196 by directly connecting a new force main from this pump station to the WNRWF headworks. Table 3.2-1 summarizes the pump station characteristics; Figure 3.2-1 shows the influent wastewater flow rate over the period studied.

Table 3.2-1: Collection System Pump Stations Currently Connected Directly to the WNRWF

Pump Station	No.	Нр	Pump Capacity (gpm)	Pump Capacity (mgd)
PS No. 210 (Main PS) ⁽¹⁾	3	90	7,000	10.0
PS No. 196 (Wolfe Point Regional PS) ⁽²⁾	2	88	1,896	2.7
Total			8,896	12.7

Notes:

1. Based on 2 units in service. The combined flow shown is based on August 2005 field testing by County staff. Note that the field-measured capacity was greater than the design combined pumping capacity of 6,500 gpm shown on the 1994 as-built drawings of PS 210, prepared by GMB. Pump capacity per unit is 4,400 gpm per Flygt Pumps test report, Nov. 11, 1995.

2. Based on 1 unit in service. Pump capacity taken from Flygt Pumps test report, Jan. 1, 2002.

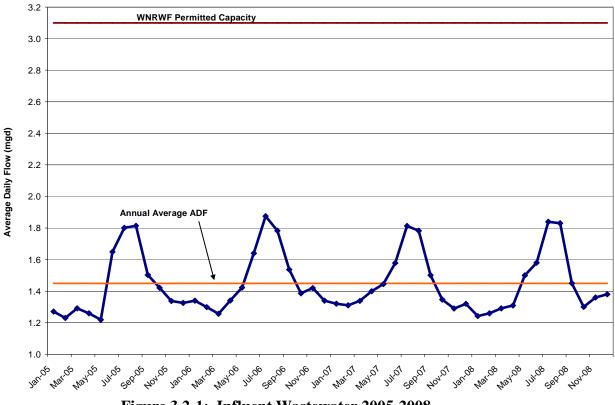


Figure 3.2-1: Influent Wastewater 2005-2008

The maximum month ADF over the period of analysis was 1.9 mgd in July 2006. Monthly flow data going back to 1999 were analyzed and July 2006 had the greatest flow rate of the entire data set. During July 2006 <u>15,934</u> EDUs were connected to the WNRWF, resulting in a monthly average flow contribution of <u>119</u> gpd/ EDU.

Historically, the maximum month flow contributions from EDUs in the West Rehoboth service area has been higher (maximum of 149 gpd/ EDU in 2001), but this figure has dropped in recent years. The drop in maximum month flow per EDU may be related to the large number of constructed by unoccupied or under-occupied housing units built during the recent housing boom in the region. This trend is shown in Table 3.2-2.

Year	Summer Max Month ADF (mgd) ^(1,2)	Month Maximum Flow Occurred	Total Number of EDUs in Sewer Service Area ^(3,4)	Summer Max Month ADF per EDU (gpd/EDU)
2000	1.4	July	10,150	135
2001	1.7	July	11,472	149
2002	1.6	July, August	12,133	131
2003	1.8	July	13,155	136
2004	1.8	August	14,412	123
2005	1.8	August	15,272	119
2006	1.9	July	15,934	118
2007	1.8	July	16,775	108
2008	1.8	July	17,272	107
		125		
		Maximum		149

Table 3.2-2: WNRWF Maximum Monthly Flow Data

Notes:

1. Influent data for years 2000 to 2008 are from WNRWF Monthly Reports and the Sussex County Engineering Department.

2. Summer was defined as June, July, and August.

3. The contributing sewer service area is in the WRE of the DBSSD.

4. The total number of EDUs in the sewer service area is at mid-year (July 1). This data was provided by the Sussex County Engineering Department from billing records.

From 2005-2008, the summer (defined as June, July and August) has approximately 35% more wastewater influent than the winter (defined as December, January and February). Table 3.2-3 shows the seasonal flowrates; Table 3.2-4 summarizes the seasonal flow ratios.

Year	Summer ADF (mgd)	Winter ADF (mgd)	Annual ADF (mgd)	Max Month ADF (mgd)
2005	1.8	1.3	1.5	1.8
2006	1.8	1.3	1.5	1.9
2007	1.7	1.3	1.4	1.8
2008	1.8	1.3	1.5	1.8
Average	1.8	1.3	1.5	1.8

 Table 3.2-3:
 WNRWF Seasonal Monthly Influent Flowrates

Note:

1.

Winter is defined as December, January, February; summer is defined as June, July, August.

Year	Summer/ Winter Ratio	Max Month/ Annual Ratio	Max Month / Summer Ratio
2005	1.4	1.2	1.0
2006	1.3	1.3	1.1
2007	1.3	1.3	1.1
2008	1.4	1.3	1.1
Average	1.4	1.3	1.0

Table 3.2-4: WNRWF Seasonal Flow Ratios

Note:

1. Winter is defined as December, January, February; summer is defined as June, July, August.

Like the RBSTP, the seasonal nature of the flow to the WNRWF is attributed to its close proximity to a popular vacation coastline. The same living patterns (high population in summer, low in winter) apply to this location and cause the corresponding flux in wastewater flows. Because of these trends, both the summer average and summer maximum flows were estimated to determine the current operating state of the facility and to estimate future operating conditions.

3.3 PROJECTED FLOWS

Similar to the RBSTP, EDUs were used for this analysis. EDUs convert all different types of customers into the equivalent number of single-family residential users. For future planning projections, a contribution of 150 gpd/ EDU was used for both existing and future connections.

Historical growth rates in sewered districts typically range from 3-5%. While due to current economic conditions growth has been on the higher end from 2003 to 2008, the WRE is expected to grow at slower rate than in recent history. 3% is a more typical long term growth rate in sewered areas. To project future growth, a constant rate of 3% of the estimated existing 17,121 EDUs, approximately 513 EDUs, was added each year. This annual increase of 513 EDUs was applied through the planning period of 2030. For Goslee Creek, 100 EDUs was assumed to connect in 2025 and increase at a rate of 100 EDUs/ year. Table 3.3-1 summarizes the projected wastewater influent flows. More

detailed projected flows for the entire Inland Bays Planning Area are provided in Appendix C.

Year	Contributing EDUs	Max Month ADF (mgd)	Summer Month ADF (mgd) ⁽³⁾	Winter Month ADF (mgd) ⁽⁴⁾	Annual ADF (mgd) ⁽⁵⁾
Current	18,600	$1.9^{(1)}$	1.8	1.3	1.5
Year 2030	29,000	4.4 ⁽²⁾	4.2	3.1	3.5
Ultimate Design	47,800	7.2	6.9	5.1	5.7

 Table 3.3-1:
 WNRWF Projected Wastewater Influent Flows

Notes:

1. Current max month ADF based on July 2006 observed flow.

2. Year 2030 max month ADF based on an annual increase of 513 EDUs/yr for the WRE and 100 EDUs/ yr for Goslee Creek starting in 2025. Total EDUs are multiplied by 150 gpd/ EDU.

3. Summer ADF based on applying observed 1.1 average ratio of max month to average summer ADFs from Table 3.2-3 to projected max month ADF.

4. Winter ADF based on applying observed 1.4 average ratio of summer to winter ADFs from Table 3.2-3 to projected summer ADF.

5. Annual ADF based on applying observed 1.3 average ratio of max month to annual ADFs from Table 3.2-3 to max month ADF.

3.4 CURRENT INFLUENT LOADING

The WNRWF regularly monitors influent wastewater characteristics. For this study, the monthly averages from 2005-2008 were analyzed. The average and maximum monthly concentrations are summarized in Table 3.4-1. Table 3.4-2 shows the associated monthly loading rates.

Parameter	Average Month Concentration (mg/L)	Max Month Concentration ⁽³⁾ (mg/L)
BOD5	255	332
TSS ⁽¹⁾	255	332
TKN	52	68
NH3-N ⁽²⁾	30	40
Org-N ⁽²⁾	24	31

Table 3.4-1: Current WNRWF Wastewater Influent Characteristics

Notes:

1. Data adjusted to closer reflect expected values. Original data suspected to be low, perhaps due to settling of samples.

2. NH₃-N and Org-N concentrations based on data from 2007-2008.

- 3. Due to incomplete data set, the maximum month concentration is based on a 1.3:1 maximum to average ratio (Metcalf & Eddy, Figure 3-8, 4th Edition).
- 4. Max month concentrations are shown at average monthly flow, but maximum month can occur at any flowrate.

Parameter	Average Monthly Loading (lbs/mo)	Max Month Loading (lbs/mo)
BOD ₅	3,100	4,000
TSS	3,100	4,000
TKN	660	820
NH3-N	360	480
Org-N	290	380

Table 3.4-2: Current WNRWF Influent Loading

Notes:

1. Loading values based on observed values from 2005 to 2008.

3.5 PROJECTED INFLUENT LOADING

It is assumed that the current wastewater strength will not change dramatically. Based on this assumption, the projected influent loading is based on the current influent concentrations at the projected flows, as shown in Table 3.5-1.

Design Period BOD ₅		BOD ₅ (lbs/d) TSS (lbs/d)		lbs/d)	TKN (lbs/d)		NH3-N (lbs/d)		Org-N (lbs/d)	
Design renou	Avg.	Max.	Avg.	Max.	Avg.	Max.	Avg.	Max.	Avg.	Max.
Current ⁽¹⁾	4,000	5,200	4,000	5,200	820	1,100	480	620	380	490
Permitted Capacity	6,600	8,600	1,400	1,800	1,400	1,800	790	1,000	630	800
2030 Projected	9,400	12,000	9,400	12,000	1,900	2,500	1,100	1,500	900	190
Ultimate Flow	15,000	20,000	15,000	20,000	3,100	4,100	1,800	2,400	1,500	260

Table 3.5-1: Projected Influent Loading

Notes:

1. Loading values based on concentrations shown in Table 3.4-1 and the max month ADF of 1.9 mgd.

3.6 CURRENT EFFLUENT PERFORMANCE

The operators at the WNRWF have been able to meet the DNREC-permitted discharge limits by a wide margin. The facility is required to submit monthly Spray Effluent Monitoring Reports in order to demonstrate record of discharge limit compliance. Data was provided by the County for 2005 through 2008. A summary of the average values

reported over this four-year period is presented in Table 3.6-1. Figure 3.6-1 shows the seasonal BOD_5 and TSS effluent performance as a plot. Complete performance data are provided in Appendix B.

Parameter	Permit Limit	Current Value ⁽¹⁾
BOD ₅	50 mg/L Daily Average	14.8 mg/L
TSS	90 mg/L Daily Average	17.0 mg/L
pН	5.0 Minimum	8.0
pn	9.0 Maximum	0.0

 Table 3.6-1: Comparison of Actual Effluent Performance to Permit Limits

Notes:

1. Data provided by the SCED. Average of monthly averages from 2005-2008.

Year	BOD ₅ (mg/L)	TSS (mg/L)	TN (mg/L)	TP (mg/L)
2005	Not Available	Not Available	20.3	Not Available
2006	15.7	21.8	18.8	5.8
2007	13.3	13.7	20.7	7.0
2008	15.5	15.5	19.0	7.2
Average	14.8	17.0	19.9	6.6
Percent Removal ⁽²⁾	94%	93%	75% ⁽³⁾	5% ⁽⁴⁾

Table 3.6-2: Current Effluent Performance

Notes:

1. Data provided by the SCED. Average of monthly averages.

2. Percent removal based on influent concentrations listed in Table 3.4-2.

3. Total Nitrogen removal based on assumed influent TN as influent TKN multiplied by 3/2.

4. Phosphorus removal based on assumed TP influent concentration of 7 mg/ L for medium strength wastewater (Metcalf & Eddy, Figure 3-8, 4th Edition).

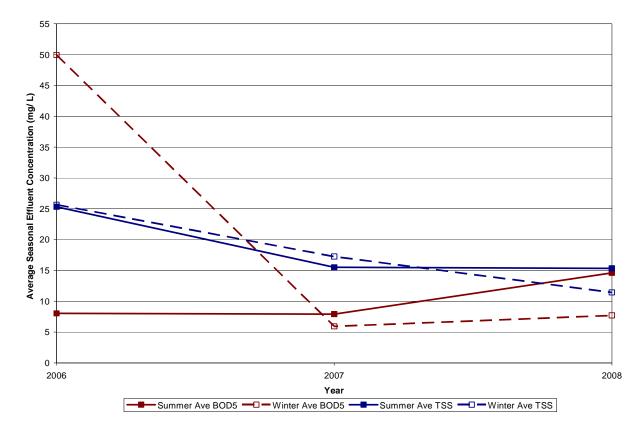


Figure 3.6-1: Seasonal BOD₅ and TSS Effluent Performance (2006-2008)

While always under permit limits, the effluent performance of the WNRWF varied over the period of study. Both BOD₅ and TSS initially had better performance during summer. During 2007, the effluent discharge of these pollutants began to be lower during winter, and remained that way through 2008.

To meet its spray irrigation requirements, the facility cannot exceed 396 lbs/ ac/ year of total nitrogen. The WNRWF has consistently met these requirements. A summary of this information is presented in Table 3.6-3; seasonal effluent concentrations are shown in Figure 3.6-2. Complete effluent nitrogen data are available in Appendix B.

Year	TN (lbs/ac/yr)
2005	290
2006	240
2007	290
2008	260
Average	270

Notes:

1. Data provided by the SCED. Loading rates based on effluent loadings divided by the acres in service.

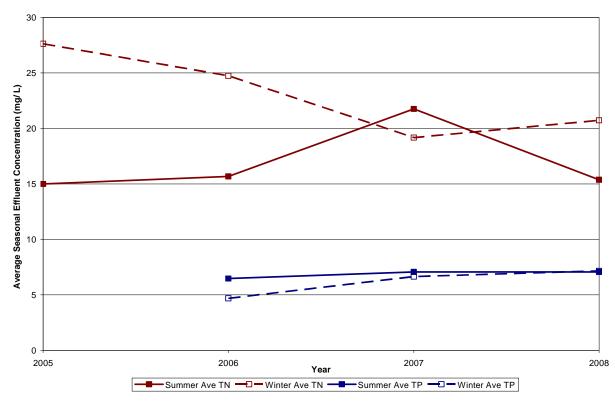


Figure 3.6-2: Seasonal TN and TP Effluent Performance (2005 – 2008)

As with BOD_5 and TSS, the TN performance varied throughout the period of study. Like BOD_5 , the TN effluent is higher during the beginning of the period of study compared to 2008. The effluent TP concentration remained relatively constant from 2005-2008, with little seasonal variation.

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT Chapter 3

3.7 PROJECTED EFFLUENT PERFORMANCE

To estimate future performance, it was assumed that effluent concentrations of BOD₅, TSS, and TN increase in proportion to flow. This approximately translates into doubling the current effluent concentrations since the current annual average daily flow of 1.5 mgd is approximately 50% of the permitted capacity of 3.1 mgd. Future TP effluent concentrations were increased to 7 mg/L because performance is expected to decrease, but the effluent concentrations cannot exceed influent concentrations. Development of these calculations is further discussed in Chapter 7.

 Table 3.7-2:
 WNWRF Projected Effluent Performance

	Flow	Total N	Total Nitrogen		Total Phosphorus		BOD ₅		TSS	
Design Period	Annual ADF (mgd)	Conc. (mg/L)	Annual Loading (lbs/yr)	Conc. (mg/L)	Annual Loading (lbs/yr)	Conc. (mg/L)	Annual Loading (lbs/yr)	Conc. (mg/L)	Annual Loading (lbs/yr)	
Current	1.5	20.0	91,000	6.6	30,000	15.0	68,00	17.0	78,000	
Permitted Capacity	3.1	41.0	390,000	7.0	66,000	31.0	330,000	35.0	330,000	

Notes:

1.

Projected concentrations are based on a 2.1:1 ratio. This ratio was derived by assuming a linear relationship between performance and flow.

4. WASTEWATER TREATMENT AND DISPOSAL ALTERNATIVES

4.1 INTRODUCTION

There are four possible options being considered by the County to handle the wastewater in the NCPA and from the City of Rehoboth Beach. The possible solutions can be grouped into four general treatment and disposal alternatives:

- Alternative 1: The RBSTP shuts down and sends all of its raw wastewater to the WNRWF, which will treat as much wastewater as possible and send the excess to another facility to be treated. The excess wastewater will be treated by the County owned and operated Inland Bays Regional Wastewater Facility (IBRWF).
 - Alternative 2: The RBSTP remains in service and sends its treated effluent to the WNRWF for disposal via spray irrigation. A reduced amount of WNRWF influent wastewater from its service area will continue to be treated at that facility, with all excess being sent to either the IBRWF or a private contractor for treatment and disposal.
 - Alternative 3: The RBSTP remains in service and discharges treated effluent via an ocean outfall. In this scenario, the County will continue treating and disposing wastewater via land application at its existing facilities. The WNRWF will remain in service and continue treating and disposing wastewater from its service area. Any excess flow to the WNRWF above the capacity of the facility will be sent to the IBRWF for treatment and disposal.
 - Alternative 4: The RBSTP remains in service and discharges treated effluent via an ocean outfall. The County continues to treat wastewater via land application at the WNRWF. The WNRWF will expand and upgrade its treatment capacity.

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT Chapter 4

Treated wastewater that exceeds the WNRWF disposal capacity will be pumped to the Rehoboth ocean outfall for disposal.

4.2 PRIVATE WASTEWATER TREATMENT PROVIDER

In addition to the four previous alternatives, the County has received a proposal from a Private Wastewater Provider (PWWP) to convey wastewater in excess of the available capacity at the County's WNRWF to a privately owned location for treatment and disposal.

Figure 4.2.1 details the infrastructure proposed by the PWWP to convey excess wastewater from the WNRWF to the privately owned location. A transfer pumping station will be required at the WNRWF to accept flow in excess of the plant's capacity. This pumping station will pump through a 24-inch force main, approximately 82,000 LF to the treatment and disposal lands. The PWWP has proposed a booster pumping station at the intersection of Coastal Highway and Cave Neck Road in order to accept flow from outside the County's planning area. This pump station has been removed from this evaluation since this station would provide capacity for flows not being contributed by the County. The use of a PWWP only impacts Alternatives 1 and 2.

4.3 ALTERNATIVE 1

In Alternative 1, the RBSTP is taken out-of-service and all raw wastewater currently conveyed to that treatment plant is pumped directly to the WNRWF by a new Rehoboth Beach Wastewater Pumping Station (RBWWPS). The raw wastewater would enter a new WNRWF headworks where it will mix with influent wastewater from the Wolfe Neck Service Area. Because the mixed influent will exceed the treatment and disposal capacity of the WNRWF, the total influent wastewater will be split between being treated at this facility and being sent elsewhere via the proposed

Wolfe Neck Transfer Pump Station (WNTPS). Figure 4.3-1 is a schematic showing how the influent wastewater would be transferred between the RBSTP, WNRWF, and third treatment facility.

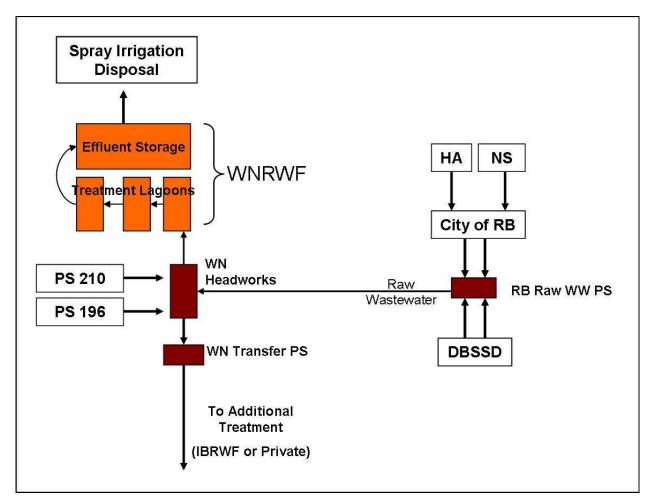


Figure 4.3-1: Alternative 1 Wastewater Flow Schematic

The excess wastewater will be sent either to the IBRWF for treatment and disposal. Figure 4.3-2 is the flow distribution diagrams for Alterative 1A. The flow rates given in these figures will be discussed in Chapter 7 of this report.

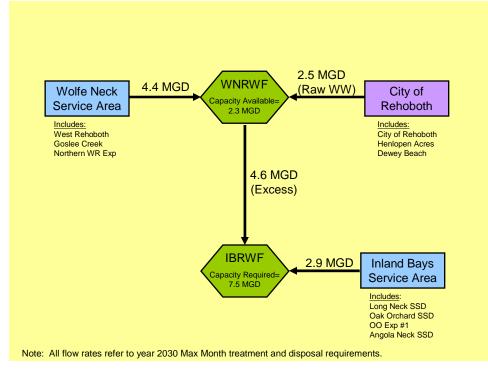


Figure 4.3-2: Alternative 1A NCPA Flow Distribution Diagram

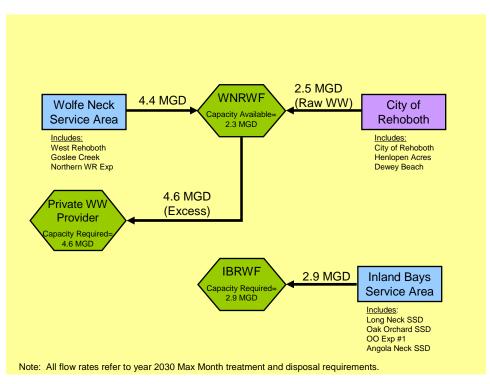


Figure 4.3-3: Alternative 1B NCPA Flow Distribution Diagram

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

If Alternative 1A is selected and excess wastewater is sent to the IBRWF for treatment and disposal, the treatment and disposal capacities at this facility will need to be expanded accordingly. This concept is discussed further in Chapter 9.

4.4 ALTERNATIVE 2

In Alternative 2, the RBSTP would continue to operate and achieve biological nutrient removal. Treated effluent from the RBSTP would be pumped by a new effluent pumping station and sent directly to the WNRWF treated effluent storage lagoon for spray irrigation disposal. A portion of the influent flow from the Wolfe Neck Service Area would continue to be treated in the existing WNRWF treatment lagoons and disposed of on-site along with the treated effluent from the RBSTP, while the balance of the raw wastewater from West Rehoboth would be transferred to either the IBRWF or a private contractor for treatment and disposal. Figure 4.4-1 is a schematic showing how the influent wastewater would be transferred between the RBSTP, WNRWF, and a third treatment facility.

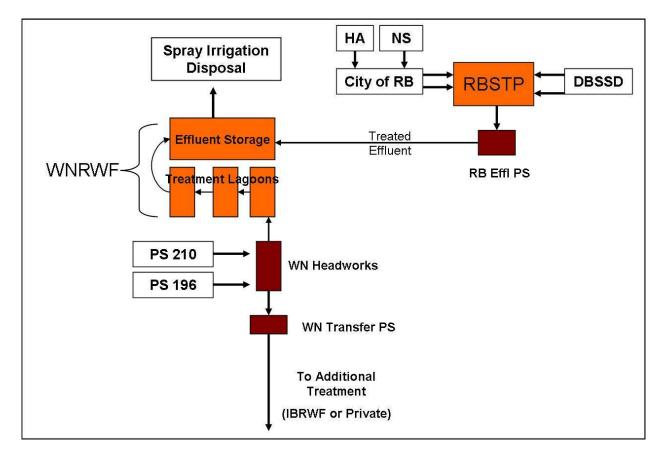


Figure 4.4-1: Alternative 2 Wastewater Flow Schematic

Figures 4.4-2 and 4.4-3 are flow distribution diagrams of Alterative 1A and 1B. The flow rates given in these figures will be discussed in Chapter 7 of this report.

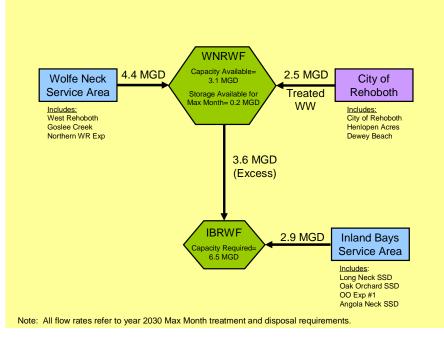


Figure 4.4-2: Alternative 2A NCPA Flow Distribution Diagram

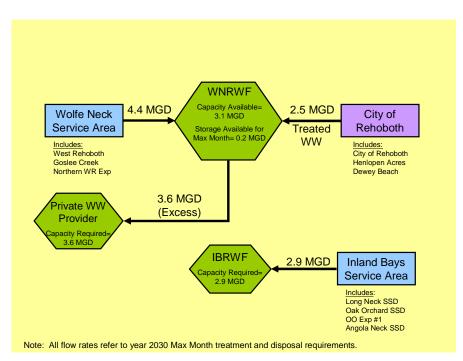


Figure 4.4-3: Alternative 2B NCPA Flow Distribution Diagram

Similar to Alternative 1A the IBRWF will need to be expanded if Alternative 2A is selected. This concept is discussed further in Chapter 9.

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

4.5 Alternative 3

In Alternative 3, the Rehoboth Beach would find its own solution for effluent discharge independent of the County. This solution would likely be an ocean outfall. Sussex County would then manage the NCPA wastewater at the WNRWF and IBRWF.

It is projected that in the future the influent wastewater from the Wolfe Neck service area will exceed the WNRWF treatment and disposal capacity and additional capacity will be required elsewhere. The IBRWF will likely provide the additional capacity required by the WNRWF and a private contractor option will no longer be necessary. Similar to Alternative 1, influent wastewater would enter into a new headworks at the WNRWF and be separated by what the WNRWF can treat and what will need to be sent to IBRWF. Wastewater to IBRWF will be transferred via the WNTPS. Figure 4.5-1 is a flow schematic of the wastewater treated by the WNRWF and the IBRWF. Figures 4.5-2 is a flow distribution diagram of Alterative 3. The flow rates given in Figure 4.5-2 will be discussed in Chapter 9 of this report.

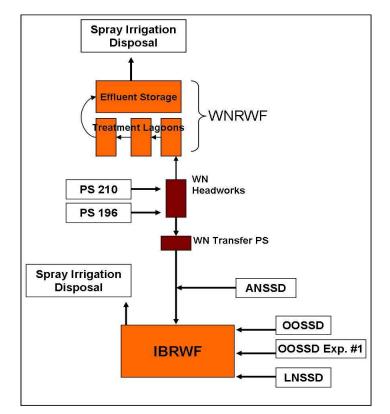


Figure 4.5-1: Alternative 3 Wastewater Flow Schematic

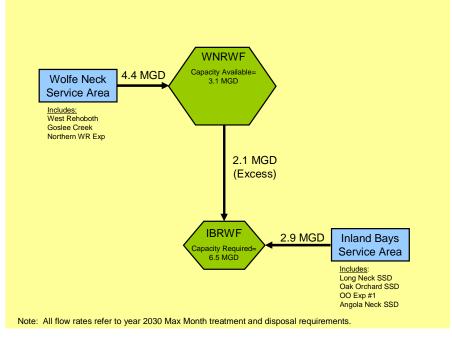


Figure 4.5-2: Alternative 3 NCPA Flow Distribution Diagram

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

4.6 Alternative 4

In Alternative 4, the RBSTP would continue to operate and achieve biological nutrient removal. Treated effluent from the RBSTP would be pumped by a new effluent pumping station and sent to an ocean outfall for disposal. A portion of the influent flow from the Wolfe Neck Service Area would continue to be treated in the existing WNRWF treatment lagoons and disposed of on-site. The balance of the raw wastewater from West Rehoboth would be treated through an independent treatment train designed to achieve biological nutrient removal. Figure 4.6-1 is a schematic showing how the influent wastewater would be transferred between the RBSTP, WNRWF, and the combined ocean outfall.

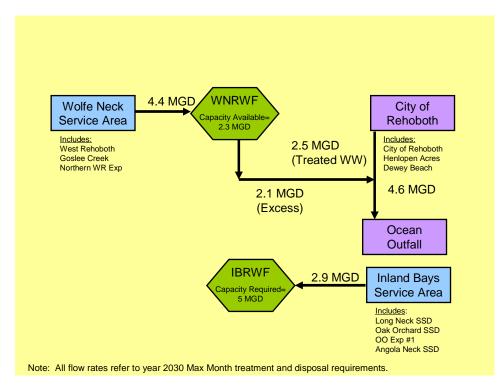
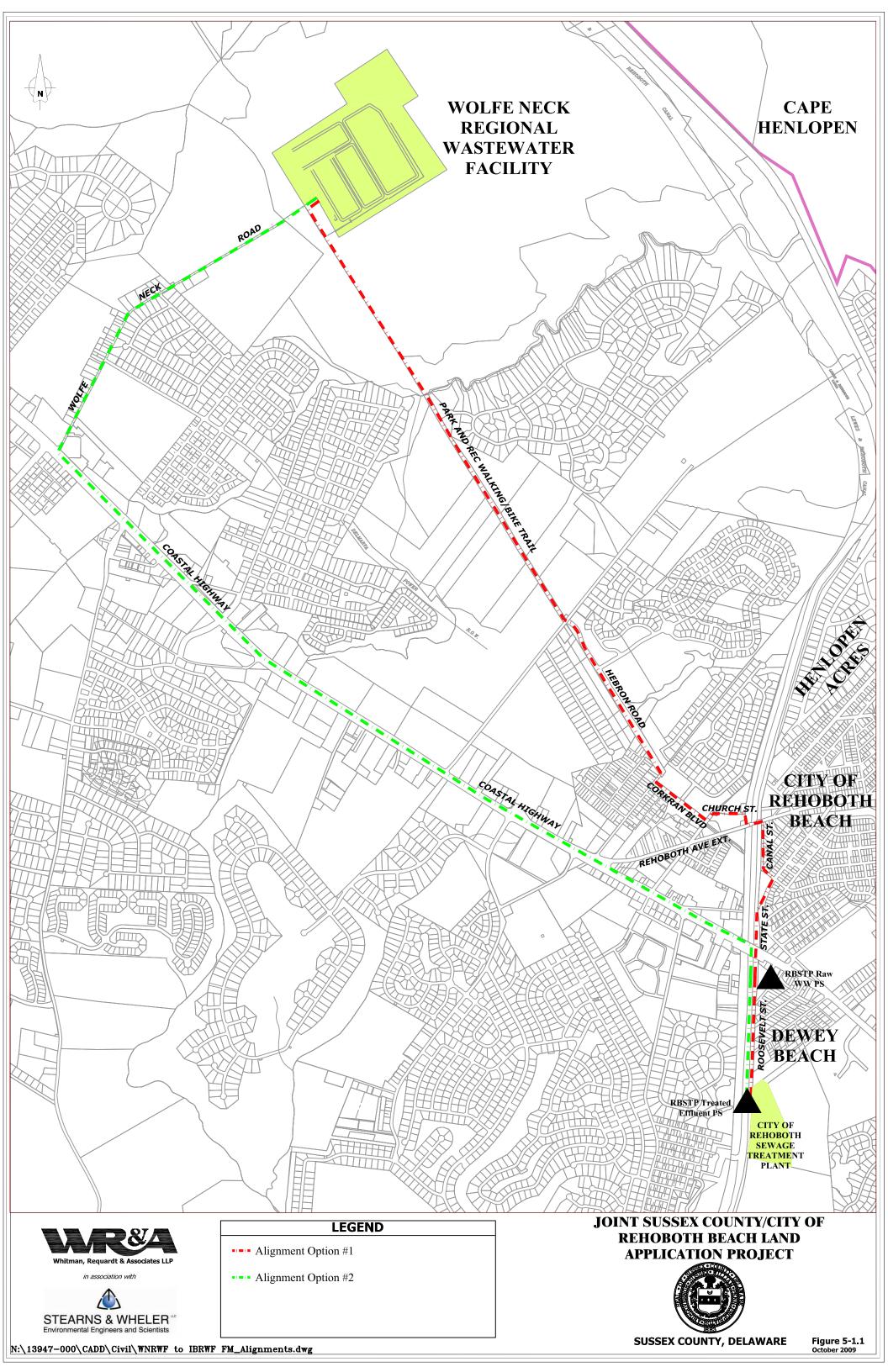


Figure 4.6-1: Alternative 4 NCPA Flow Distribution Diagram

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT


5. REHOBOTH BEACH CONVEYANCE SYSTEM

Of the four base alternatives (Alt. 1, 2, 3, &4) outlined in Chapter 5 for Rehoboth, Alternatives 1 and 2 will require conveyance of wastewater from the RBSTP to the WNRWF. This chapter presents the options and associated costs for conveying wastewater from the RBSTP to the WNRWF for Alternatives 1 (raw wastewater) and 2 (treated effluent). Per the Rehoboth Beach Alternative Discharge Evaluation, the required design flowrate for both alternatives is 10.2 mgd, which is the peak instantaneous design rate associated with the 3.4 mgd ultimate design of the RBSTP.

5.1 ALTERNATIVE 1: RAW WASTEWATER CONVEYANCE

In Alternative 1, the RBSTP will be taken out of service and a new pumping station will be constructed to collect raw wastewater from the City of Rehoboth Beach, the Dewey Beach SSD and the Henlopen Acres SSD and pump to the Wolfe Neck Regional Wastewater Facility. The location of this proposed station along with two potential force main alignments, has been indentified and are shown on Figure 5.1-1.

The force main alignment Option #1 involves the construction of approximately 16,200 lf of 30-inch force main from the proposed raw wastewater pumping station location, north along State Street and Canal Street to Rehoboth Avenue (SR 1A), where the force main will be installed underneath the Rehoboth Canal to Church Street. From this point the force main will be installed north and west along Church Street to Corkran Boulevard, northwest along Corkran Boulevard to Hebron Road and northwest along Hebron Road to the intersection of Holland Glade Road. The remaining portion of the force main will be installed in an easement along the Park and Recreational Walk/Bike Trial to Wolfe Neck Road, and then north and east along Wolfe Neck Road to the WNRWF headworks.

Force main alignment Option #2 involves installing approximately 21,000 lf of 30-inch force main northwest along Coastal Highway (SR 1) to Wolfe Neck Road, and northeast along Wolfe Neck Road to the WNRWF headworks.

5.2 ALTERNATIVE 2: TREATED EFFLUENT CONVEYANCE

In Alternative 2, the RBSTP will remain in service and a new effluent pumping station would be constructed on or near the RBSTP site, as indicated in the previous Figure 5.1-1, to convey treated effluent to the WNRWF. From the Rehoboth Beach Alternative Discharge Evaluation, the design concept for this station would involve the retrofit of an existing reparation basin at the RBSTP and the installation of vertical turbine pumps to draw treated effluent from the RBSTP. This configuration would decrease the cost for the pump station as compared to Alternative 1.

The same force main alignment options will be considered for this alternative, with the exception that 2,000 lf of additional force main would need to be installed from the RBSTP to Roosevelt St.

5.3 FORCE MAIN DESIGN CRITERIA

In accordance with Sussex County Design Standards, a Hazen-Williams "C-factor" of 140 is used for all hydraulic computations for new PVC force main, with a target design force main velocity of 3 to 5 feet per second (ft/s). Table 5.3-1 is a summary of the hydraulic calculations for both alignment options under each treatment alternative.

				Alignment Option #1- Utility Easements		0	ent Option #2- stal Highway
	Peak Q	FM size	Velocity	Length	Total Dynamic Head ⁽¹⁾	Length	Total Dynamic Head ⁽¹⁾
Treatment Alternative	(MGD)	(in.)	(ft/s)	(ft)	(ft)	(ft)	(ft)
#1 - Raw Wastewater	10.20	30	3.6	16,200	76	21,000	82
#2 - Treated Effluent	10.20	30	3.6	18,200	78	23,000	84

 Table 5.3-1 Summary of Force Main Hydraulic Information

Notes:

1) 45 feet of static head was assumed along with 8' of minor losses were included in the calculation for Total Dynamic Head.

5.4 PRELIMINARY COST ESTIMATES

For Alternative 1, a new pump station would be constructed to intercept all flows entering the treatment plant. The station would be designed as a three pump station, with two pumps operating and one back-up pump. Based on the hydraulic conditions in Table 5.3.1, pumps in the 100-150 HP range are anticipated. This station would be a stand alone pump station similar to other large Sussex County regional pump stations such as Beaver Dam (PS#293), Ocean View (PS#99), or Rehoboth (PS#210). Construction would involve a cast-in-place concrete wetwell, with associated items such as an external valve vault, backup generator, and a control building to house the electrical equipment. Costs for the Alternative 1 pump station are based on bid costs for similarly sized County stations. The pump station cost for Alternative 2 is per the Rehoboth Beach Alternative Discharge Evaluation.

Cost estimates for the proposed force mains for each treatment alternative and each alignment option are presented in Appendix D. Table 5.4-1 provides a cost summary for both the pump stations and force main alignments for each Alternative. The total project costs for each alternative are one component of the cost sharing model as further described in Chapter 10.

				Estimated
		Estimated FM	Estimated PS	Total Project
Treatment Alternative	Alignment Option	Cost	Cost	Cost (1.)
Alternative #1 (Raw WW				
from New Pumping	Option #1 (Park			
Station Location)	and Rec Easement)	\$4,191,000	\$4,039,000	\$8,230,000
	Option #2 (Coastal			
	Highway)	\$7,247,000	\$4,039,000	\$11,286,000
Alternative #2 (Treated				
Effluent Pumped from	Option #1 (Park			
RBSTP)	and Rec Easement)	\$4,684,000	\$1,208,000	\$5,892,000
	Option #2 (Coastal			
	Highway)	\$7,766,000	\$1,208,000	\$8,974,000

 Table 5.4-1 Summary of Rehoboth to WNRWF Conveyance Costs

Note:

1. Costs include 10% construction contingency and 22% project costs.

Table 5.4-2 provides a summary of the force main alignment options for both Conveyance Option 1 and Option 2. Based on the costs presented above for the FM, along with the added difficulty of construction along Coastal Highway, Alignment Option #1 through the Park and Recreational Walk/Bike Trail would be the preferred Option for either Alternative.

	Option #1	Option #2
Description	Utility Easement	Coastal Highway
Details		
Total length	Option 1 - 16,200 feet Option 2 – 18,200 feet	Option 1 - 21,000 feet Option 2 – 23,000 feet
Size	30 inch	30 inch
Pavement restoration length	Option 1 - 4,000 feet Option 2 - 5,000 feet	Option 1 – 17,750 feet Option. 2 – 18,750 feet
Environmental Considerations	Rehoboth Canal Crossing	Rehoboth Canal Crossing
Crossings		
Major Water Crossings	1) Rehoboth Canal	1) Rehoboth Canal
Minor Stream Crossings	1	0
Construction		
Major Highway Installation	0	14,500
County Road Installation	10,000	8,500
Installation Ranking	1	2
Easements		
Temporary Easements	Yes	Yes
Permanent easements	Yes	Yes

Table 5.4-2 Summary of Force Main Alignment Options

Notes:

1) Major Highway Installation refers to installation along Coastal Highway, County Road Installation refers to installation along all other County Roads.

2) Pavement restoration length was obtained assuming 100% restoration in Major Highways and 50% restoration elsewhere.

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

6. SPRAY IRRIGATION DISPOSAL ANALYSIS

6.1 WOLFE NECK REGIONAL WASTEWATER FACILITY

The Wolfe Neck Regional Wastewater Facilities (WNRWF) began operating in the mid 1990s. It has five circular spray irrigation fields, which have a combined size of 319 acres. Field No. 1 is 165 acres; No. 2 is 66 acres; No. 3 is 46 acres; No. 4 is 25 acres; and No. 5 is 17 acres. Sussex County has a permit from DNREC, which requires that the average quantity of effluent discharged to the spray fields not exceed 3.1 million gallons/day (mgd) in any calendar month. The maximum permitted application rates are as follows: 2.6 inches/week in June and September; 2.75 inches/week in July and August; and 2.5 inches/week in October through May. Other permit conditions include a 24-hour rest period between spraying events, a prohibition on spraying when there is rain, snowfall, or freezing or saturated ground; and ground water mounds must be 2 feet or greater below the land surface.

Effluent data provided by the Sussex County for the period January 2006 to September 2008 indicates that they have sprayed a monthly average of 1.4 mgd to 2.7 mgd; and a peak day of 2.2 to 4.7 mgd. There are several possible reasons why less than the permitted monthly average of 3.1 mgd has been sprayed at the WNRWF. The first reason is that the effective area of the spray fields on a given day is less than the permitted 319 acres. The effective area has been estimated as 233 acres. Factors that tend to reduce the effective spray area include the farmer taking fields out of service for planting and harvesting; and the operators not spraying on fields when the ground conditions are freezing and the ground is saturated or ponded with water. The second reason is the reduced spraying days. The operating days per year are estimated as 268 days, i.e. less than a full year. The third reason is localized areas may be underlain by soils that may have been compacted by farming operations, or they may be naturally poorly draining soils. WR&A performed a disposal capacity analysis using a conservative (i.e. slow) infiltration rate based on field rates from the design development report for the WNRWF, assuming conservative estimates of 268 spraying days per year, and an effective area of 233 acres. The result of that analysis is a capacity estimate of 1.0

mgd for the spray fields. Assuming less conservative values for parameters leads to a higher capacity estimate. For example, a 3.1 mgd estimate can also be arrived at by selecting higher field-measured values from the design development report infiltration tests. A program consisting of plowing areas with compacted soils, and changes in farming practices, and increased storage for effluent, might lead to a 3.1 mgd monthly disposal at the existing fields. However, for planning purposes, a disposal rate of 2.3 mgd, which is closer to the actual recent disposal of 2.0 mgd, appears more realistic than the permitted 3.1 mgd.

6.2 INLAND BAYS REGIONAL WASTEWATER FACILITY

The Inland Bays Regional Wastewater Facilities (IBRWF) began operating in 1992. It has two, 103.9-acre circular spray irrigation fields which are designated the north and south fields. The County's spray irrigation permit requires that the average quantity of effluent discharged to the spray fields not exceed 1.5 million gallons per day in any calendar month. The maximum permitted application rate is 1.86 inches/week. The County sprayed an average of 0.5 to 1.45 million gallons per day (mgd), with peak days ranging from 0.65 to 1.6 mgd, in the period January 2006 through September 2008. Sussex County has purchased land surrounding the IBRWF, and it plans to expand the spray irrigation fields in phases. Table 6.2-1 provides capacity estimates for properties currently owned by Sussex County.

Category	Parcel Number (TM 2- 34-22)	Site	Spray Fields (acres) ⁽⁴⁾	Application Rate (inches/week)	Capacity (million gallons/day)
Existing	12	North field ⁽¹⁾	103.9	1.86	0.75
	13	South field ⁽¹⁾	103.9	1.86	0.75
Ex. Subtotal					1.50
Initial Exp. Areas	12	N. Burton ⁽²⁾	52	1.5	0.30
	12	S. Burton ⁽²⁾	47	1.0	0.18
	19	Hettie-Lingo ⁽²⁾	54	2.0	0.43
	19	Hettie-Lingo ⁽²⁾	81	1.0	0.31
	10	Townsend ⁽²⁾	58	2.0	0.45
	10	Townsend ⁽²⁾	56	2.5	0.55
	18	Cordrey Parcel ⁽²⁾	192	2.0	1.49
Initial Exp					3.71
Subtotal					
Long Term	(5)	Glatfelter Site ⁽³⁾	1,000	2.0	7.80
Subtotal					
Totals			1,748		13.0

Notes

(1) Capacity permitted by DNREC

(2) Capacity based on subsurface investigations and field-tested rates

(3) Capacity based on assumed rates, without subsurface investigations

(4) From Inland Bays Regional Wastewater Facility Design Development Report.

(5) Includes parcels 2-34-22-8, 2-34-21-145, 148, 149, 150, 151, 152.02, and 2-34-28-1.

Hydrogeologic investigations have been performed on parcels 10, 12, and 19 on tax map number 2-34-22. Hydrogeologic or soil studies have not been performed at the Cordrey or Glatfelter sites. The estimates for these two expansion lands are based only on a desktop review of published maps.

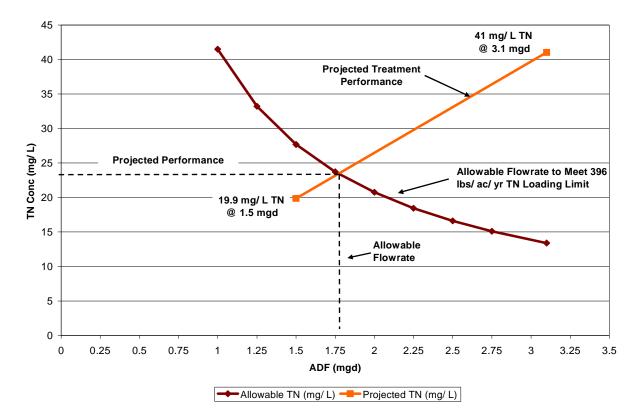
6.3 IBRWF HYDROGEOLOGIC AND SOILS TESTING COSTS

A hydrogeologic study was completed in 2005 for approximately 650 acres associated with parcels 10, 12, and 19 at a cost of \$235,000 or \$360/acre. The total acreage for the Glatfelter and Cordrey parcels is approximately 1,195 and 250 respectively. Based on previous costs and adding a 15% factor for inflation and contingency would result in testing costs of approximately \$500,000 for the Glatfelter parcel and \$100,000 for the Cordery parcel.

7. WOLFE NECK REGIONAL WASTEWATER FACILITY IMPROVEMENTS

7.1 ALTERNATIVE 1 DISPOSAL CAPACITY

In Alternative 1 the proposed Rehoboth Beach Raw Wastewater Pumping Station (RBWWPS) will send raw wastewater to the WNRWF for treatment and disposal. All wastewater that exceeds the WNRWF treatment or disposal capacity will be pumped to the IBRWF or a PWWP for treatment and disposal. The raw wastewater from the RBWWPS would blend with the wastewater coming from Goslee Creek (GC) SSD and the WRESSD.


In Alternative 1, the limiting factor for effluent disposal is the total nitrogen limits. The WNRWF spray irrigation permit has two criteria for TN, the percolate concentration must be less than 10.0 mg/L and the total annual loading cannot exceed 396 lbs/ac/yr.

The average influent TN concentration for the WNRWF is 52 mg/L. The average influent TN concentration for wastewater pumped from the RBWWPS is not measured, but was estimated in Chapter 2 to be 40 mg/L. Because there is relatively little difference in these values, it is assumed that the blended influent TN concentration will not significantly change from the influent concentrations the WNRWF currently receives. Using this assumption, the future performance of the treatment lagoons at the WNRWF will be projected from current performance.

Currently, the WNWRF produces a final effluent TN concentration of 19.9 mg/ L at an annual influent flow of 1.5 mgd. At this flowrate, the plant is operating at approximately 50% of its 3.1 mgd design capacity. Assuming final effluent TN increases proportional to increase in flow, the effluent TN concentration was increased by a factor of two to project effluent performance of the existing lagoon treatment system. A linear projection

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT Chapter 7

between these two points was compared to the maximum allowable TN concentrations at various flowrates to determine the operational limit. Figure 7.1-1 shows this comparison.

Figure 7.1-1: Alternative 1 Effluent Projection

Using this analysis, the projected performance and allowable flowrates intersect at a flowrate of 1.8 mgd. At this flowrate, the effluent TN concentration is approximately 23 mg/L. To adhere to the 396 lbs TN/ac/yr loading limit on 319 irrigated acres, the plant cannot exceed an annual average of 1.8 mgd to be discharged via spray irrigation.

The TN percolate concentration must also be calculated to verify 10.0 mg/L TN is not exceeded. Using the projected values of 23 mg/L TN and 1.8 mgd average daily flow, a nitrogen balance yielded an annual average percolate concentration of 6.3 mg/L with a maximum of 10.2 mg/L TN occurring in May. These values assume the current planting schedule of corn in summer and a winter cover crop of wheat is continued through 2030. The full nitrogen balance for the WNRWF is available in Appendix B.

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT Chapter 7

Based on these two analyses, the WNRWF will be limited by annual TN loading. The maximum quantity of effluent spray irrigated cannot exceed 1.8 mgd on an annual average basis (2.3 mgd on a max month basis), even though the state spray application permit allows a hydraulic land application rate of up to 3.1 mgd as a maximum monthly average. Table 7.1-1 summarizes the performance characteristics of the WNRWF under Alternative 1.

Parameter	Value
Max Month ADF (mgd)	2.3
Summer ADF (mgd)	2.2
Winter ADF (mgd)	1.6
Annual ADF (mgd)	1.8
Effluent TN Conc. (mg/L)	23
Effluent TN Loading (lbs/ac/yr)	395

 Table 7.1-1: Alternative 1 Disposal Capacity Summary

In order to spray apply more effluent in this alternative, the existing treatment lagoons would need to be replaced with a nitrogen removal process such as the activated sludge system being designed for the IBRWF. This upgrade would be quite costly and only result in the ability to marginally increase effluent disposal capacity from an annual ADF of 1.8 mgd to approximately 2.15 mgd as described in the next section.

7.2 ALTERNATIVE 2 DISPOSAL CAPACITY

In Alternative 2 the RBSTP will continue to operate. The treated effluent will be pumped directly into the WNRWF effluent storage lagoon to be discharged via spray irrigation. Because the treated effluent from RBSTP has a low TN concentration, both hydraulic loading and nutrient limits have to be considered.

In 2030, the RBSTP is expected to contribute a summer average of 2.3 mgd and a 0.93 mgd winter average. At this time, the entities contributing to the WNRWF are estimated to have seasonal averages of 4.2 mgd in summer and 3.1 mgd in the winter. Given the

increased flows and the land application permit hydraulic limit of 3.1 mgd as a monthly average, some combination of these flows will be treated at the WNRWF and the remaining wastewater will be sent to the IBRWF or a PWWP.

In the summer, the WNRWF will accept all of the treated effluent from the RBSTP directly into its storage lagoon to be land applied. The remaining 0.8 mgd of disposal capacity will be used for raw wastewater coming from Goslee Creek (GC) and the WRESSD, treated by the existing lagoons at the WNRWF. Any excess flow from these sewer districts will be sent to the IBRWF or a PTWP. Because the WNRWF has a large effluent storage lagoon, operations has the flexibility to potentially accept more wastewater in the summer from GC and the WRESSD as long as spray conditions allow and the effluent storage lagoon will be empty by the middle of fall (beginning of October).

Even though the summer averages are being used to define the operating schedule, the facility has to be able to accommodate maximum monthly flows in its storage lagoon. For the RBSTP in 2030, the maximum monthly flow is 2.5 mgd and the summer average is 2.3 mgd, a difference of 0.2 mgd. Over the span of a month (31 days assuming July is the maximum month), the total volumetric difference of treated effluent is 6.2 million gallons. The WNRWF historically has a 1.05 peaking factor; applied to the 0.8 mgd flow in 2030, the peak monthly flow would be 0.85 mgd. The total volumetric difference for the GC and WRESSD flows between an average month and maximum month is 1.5 million gallons. Together, the total excess volume of water for a maximum month is 7.7 million gallons. With a 69 MG capacity, the effluent storage lagoon will easily be capable of handling this extra volume. Figures 7.2-1 and 7.2-2 illustrate these calculations graphically.

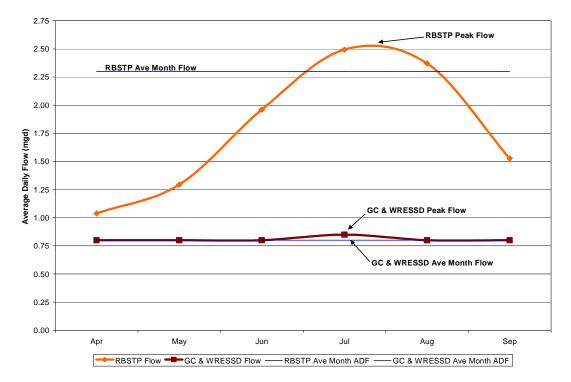
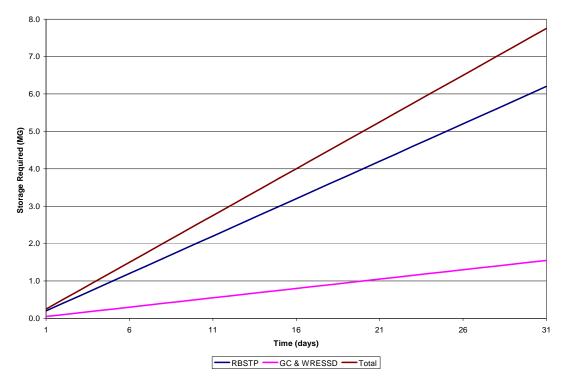
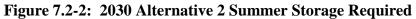




Figure 7.2-1: 2030 Summer Flows to WNRWF

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

It is recommended that the WNRWF treat a constant monthly average of 0.8 mgd yearround, even though flows from RBSTP are lower in the winter months. Added to the expected 0.93 mgd from RBSTP, the total amount discharged in the winter will average approximately 1.73 mgd. This is approximately 30% more flow than is currently disposed of during the winter at the WNRWF based on 2005 to 2008 spray application data for the months of December through February. However, improvements currently being implemented to the WNWRF spray irrigation system will allow for increased spray coverage and, therefore, quantity during winter operation. The operators at the WNRWF were able to operate the spray irrigation system approximately 14.6 days per month during the winter from 2005 through 2008 compared to 24.2 days per month in the summer over the same period. If the facility can apply wastewater at the equivalent permitted spray rate of 3.1 mgd in the summer and the spray rate is proportionally reduced during the winter (14.2 days vs. 24.2 days, or 60%) disposal of up to 1.8 mgd should be possible in the winter after the irrigation rig optimization is completed. Deep plowing or other spray field improvements may also be required to maximize field disposal potential.

Maintaining a constant flowrate of 0.8 mgd is intended to keep plant operations relatively simple year round. Also, given the difficulty inherent to the spray application of wastewater in the winter, the reduced flowrate will provide a buffer if the fields cannot be sprayed for extended amounts of time due to unfavorable weather conditions. At an average daily flow rate of 1.73 mgd, the effluent storage lagoon can provide storage for just less than 40 days during the winter. WNWRF has recently converted the third treatment lagoon for winter storage. This adds approximately 28 MG of storage, which increases the total amount of storage to over 55 days.

Table 7.2-1 summarizes the seasonal treatment patterns for Alternative 2.

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT Chapter 7

Facility	Max Month ADF (mgd)	Summer ADF (mgd)	Winter ADF (mgd)	Annual Average ADF (mgd)
RBSTP	2.5	2.3	0.93	1.35
WNRWF	0.8	0.8	0.8	0.8
Total	3.3 ⁽¹⁾	3.1	1.7	2.15
		3.1	1.7	

 Table 7.2-1:
 2030 Alternative 2 Disposal Capacity Summary

Notes: 1.

All flow in excess of 3.1 mgd, approximately 0.2 mgd, will be stored in the effluent storage lagoon to be discharged during a month with less flow.

Nitrogen loading also has to be considered in this scenario. The 396 lbs TN / ac/ yr loading limit translates into 126,000 lbs TN annually, assuming it is evenly spread across 319 acres. In 2030, the RBSTP is estimated to produce 24,700 lbs TN using the assumed values of 6.0 mg/L of TN and 1.35 mgd annual ADF. Because the amount of wastewater being treated at the WNRWF is decreasing to 0.8 mgd, effluent performance is expected to increase. Assuming a linear relationship between flowrate and performance (as in the Alternative 1 scenario), the estimated effluent TN concentration at an annual average daily flowrate of 0.8 mgd is 10.4 mg/ L. With this concentration and a 0.8 mgd flowrate, the total annual TN loading is estimated to be 25,300 lbs. The total annual TN loading for the facilities is 58,200 lbs, well under the allowable loading limit of 126,000 lbs TN. Table 7.2-2 summarizes these values.

Treatment Facility	Annual Average Flow (mgd)	TN Concentration (mg/L)	TN Loading (lbs/yr)
RBSTP	1.35	8.0	33,000
WNWRF	0.8	10.4	25,300
Total	2.15	8.9 ⁽¹⁾	58,200

 Table 7.2-2:
 2030 Alternative 2 Projected TN Loading

Notes:

1. 8.9 mg/L TN concentration is a blended average of the effluent concentrations from RBSTP and WNRWF.

Using these performance values, the average TN percolate concentration was checked to make sure it did not exceed permissible limits. a nitrogen balance yielded an annual average percolate concentration of 1.4 mg/L with a maximum of 2.4 mg/L TN occurring

in May. This calculation takes into account the same assumptions for the WNRWF crop planting schedule. The full nitrogen balance for this scenario is provided in Appendix B.

In Alternative 2, the WNRWF disposal capacity is limited by a combination of hydraulic loading limits and effluent storage capacity. At an annual average of 2.15 mgd, it can spray apply more effluent than Alternative 1 by 0.35 mgd as an annual average. The maximum month capacity for Alternative 2 is 3.3 mgd compared to 2.3 mgd for Alternative 1.

7.3 ALTERNATIVE 3 DISPOSAL CAPACITY

In Alternative 3, the WNRWF will only treat influent wastewater from its existing service area, GCSSD and WRESSD. The RBSTP will continue to operate and discharge its treated effluent via an ocean outfall; no pump station conveying wastewater to the WNRWF, raw or treated, will be constructed. All wastewater that exceeds the WNRWF treatment or disposal capacity will be pumped to the IBRWF for treatment and disposal.

Similar to Alternative 1, the disposal capacity of the WNRWF is constrained by nutrient loading. Without treatment upgrades, the expected effluent performance is identical to that discussed in Section 7.1, an effluent TN concentration 23 mg/L at an annual average flow of 1.8 mgd. Table 7.4-1 summarizes the disposal capacities for the WNRWF under the Alternative 3 scenario.

Parameter	Value
Max Month ADF (mgd)	2.3
Summer ADF (mgd)	2.2
Winter ADF (mgd)	1.6
Annual ADF (mgd)	1.8
Effluent TN Conc. (mg/L)	23
Effluent TN Loading (lbs/ac/yr)	395

 Table 7.4-1: Alternative 3 Disposal Capacity Summary

7.4 ALTERNATIVE 4 DISPOSAL CAPACITY

In Alternative 4, the WNRWF will only treat influent wastewater from its existing service area, GCSSD and WRESSD. The RBSTP will continue to operate and discharge its treated effluent via an ocean outfall; no pump station conveying wastewater to the WNRWF, raw or treated, will be constructed. The WNRWF will expand and upgrade its treatment capacity to accommodate the entire 2030 design influent wastewater flow of 4.4 mgd on a maximum monthly basis. Treated wastewater that exceeds the WNRWF disposal capacity will be pumped to the Rehoboth ocean outfall for disposal.

For this alternative, the current WNRWF treatment lagoons will continue to operate without improvements and treat up to 2.3 mgd on a maximum month basis. At this point, the disposal capacity will become nutrient limited. The year 2030 excess flow above 2.3 mgd, 2.1 mgd on a maximum month basis, will be treated separately through an independent treatment train designed to achieve biological nutrient removal. This treated wastewater will be pumped to the Rehoboth Beach ocean outfall. The treated effluent being disposed at the WNRWF site is identical to the Alternative 1 and 3 scenarios, and is summarized in Table 7.5-1.

Parameter	Value
Max Month ADF (mgd)	2.3
Summer ADF (mgd)	2.2
Winter ADF (mgd)	1.6
Annual ADF (mgd)	1.8
Effluent TN Conc. (mg/L)	23
Effluent TN Loading (lbs/ac/yr)	395

 Table 7.5-1: Alternative 3 Disposal Capacity Summary

7.5 RECOMMENDED IMPROVEMENTS FOR ALTERNATIVE 1

Based on the projected influent flows, the WNRWF headworks will need to be upgraded. A two-phase approach is proposed. Phase 1 will be completed for the projected 2030

flows, and Phase 2 will have the capacity for the ultimate build out design. A summary of these flows and the corresponding pump stations is presented in Table 7.5-1.

Entity	Year 2030 (mgd) ⁽¹⁾	Ultimate Design (mgd) ⁽¹⁾
Goslee Creek	0.6	6.5
Northern WRE Expansion	N/A	1.1
RBSTP	10.2	10.2
WRESSD	16.7	20.7
Total	27.5	39.1

 Table 7.5-1:
 Alternative 1 Projected Influent Pumping to WNRWF

Notes:

1. Pumping capacity given as peak capacity.

Phase 1 will increase the headworks capacity to handle the projected 2030 peak flowrate of 27.5 mgd. The upgrade will include a new headworks facility with two mechanical screens capable of handling the peak flowrate and a third parallel channel with an overflow weir and manual bar rack. The screens will discharge to a screw conveyor, which will bring the screenings to a compactor where the screenings will be washed and dewatered prior to discharge into a dumpster. Motorized gates will be used to isolate screenings channels for maintenance. All equipment will be enclosed in a heated block building for weather protection. Screened effluent will be routed to a new Transfer Pumping Station. A pipe from the Transfer Pumping Station will connect to a junction box to direct WNWRF influent to either treatment lagoon No. 1 or No. 2. The invert of the pipe to the junction box will be set above the normal water level in the pumping station so only flow in excess of the pumping set point will be directed to the treatment lagoons, as shown schematically in Figure 7.5-1. The new building will also contain an electrical room. A site plan of the proposed headworks and Transfer Pumping Station is shown in Figure 7.5-2

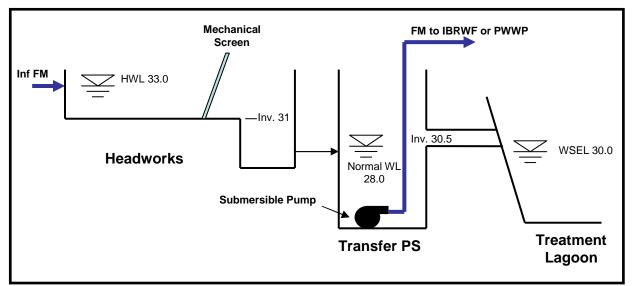


Figure 7.5-1: WNWRF Headworks and Transfer PS Flow Schematic

The Transfer Pump Station will send any flows above the WNRWF spray disposal capacity (2.3 mgd during the maximum month, 1.6 mgd in winter) to the IBRWF.

Flows	Max Month ADF (mgd)	Summer ADF (mgd)	Winter ADF (mgd)	Annual ADF (mgd)
Flows To WNRWF (+)	4.4	4.2	3.1	3.5
RBSTP to WNRWF (+)	2.5	2.3	0.9	1.4
WN Disposal Capabilities (-)	2.3	2.2	1.6	1.8
Net Pumped Flow to IBRWF	4.6	4.3	2.4	3.1

 Table 7.5-2: Alternative 1 Flow Balance for 2030

In 2030, the estimated maximum monthly flow that will have to be sent to the IBRWF is approximately 4.6 mgd. The Transfer Pumping Station will be sized to pump 150% of the maximum monthly transfer flow, <u>6.9 mgd</u>, to account for diurnal flow variations. The transfer pumps will operate on VFDs which ramp up and down on a pre-set diurnal flow pattern to mimic actual dry-weather diurnal flows. During storm events or other peak flows periods when actual influent flow exceeds the pre-set transfer flow, the exceeds flow will automatically be conveyed into the treatment lagoons when the normal high water level in the wet well is exceeded.

For ultimate build out, the headworks facility will be expanded to handle a peak flow of 39 mgd. To do so, a third fine screen will be fitted into the Phase 1 overflow channel. An overflow pipe will need to be added at this time as an emergency bypass around the screens. Table 7.5-3 shows the projected flowrates to the IBRWF or a PWWP for the ultimate design.

Flows	Max Month ADF (mgd)	Summer ADF (mgd)	Winter ADF (mgd)	Annual ADF (mgd)
Flows To WNRWF (+)	7.2	6.9	5.1	5.7
RBSTP to WNRWF (+)	3.4	3.1	1.2	1.8
WN Disposal Capabilities (-)	2.3	2.2	1.6	1.8
Net Pumped Flow to IBRWF or PWWP	8.3	7.8	4.7	5.7

 Table 7.5-3:
 Alternative 1 Flow Balance for Ultimate Design

To account for diurnal flow variations, the Transfer Pumping Station will be sized for an annual average flow of <u>12.5 mgd</u> (150% of the projected maximum month average daily flow).

7.6 RECOMMENDED IMPROVEMENTS FOR ALTERNATIVE 2

The same two phase approach will be taken if Alternative 2 is selected. However, the capacity will be reduced because the RBSTP will pump directly into the effluent storage lagoon. A summary of the projected flows for Alternative 2 is shown in Table 7.6-1.

Table 7.6-1:	Alternative 2 I	Projected	Influent Pun	nping to WNRWF
				I B I I I I I I

Entity	Year 2030 (mgd) ⁽¹⁾	Ultimate Design (mgd) ⁽¹⁾
Goslee Creek	0.6	6.5
Northern WRE Expansion	N/A	1.1
WRESSD	16.7	20.7
Total	17.3	28.3

Notes:

1. Pumping capacity given as peak capacity.

Phase 1 will include the same headworks building and electrical room as Alternative 1, but the screen sizes will be reduced accordingly. The WNRWF only treats 0.8 mgd year round in this scenario; all raw wastewater in excess of that amount is sent to the IBRWF. Table 7.6-2 shows the seasonal projected flowrates to be transferred to the IBRWF or a PWWP in 2030.

Table 7.0-2. Merhautye 2 How Datable 101 2050				
Flows	Max Month ADF (mgd)	Summer ADF (mgd)	Winter ADF (mgd)	Annual ADF (mgd)
Flows To WNRWF (+)	4.4	4.2	3.1	3.5
WN Disposal Capabilities (-)	0.8	0.8	0.8	0.8
Net Pumped Flow to IBRWF or PWWP	3.6	3.4	2.3	2.7

 Table 7.6-2:
 Alternative 2 Flow Balance for 2030

To account for diurnal flow variations, the Transfer Pumping Station will be sized for maximum month average daily flow of 5.4 mgd (150% of the projected maximum month average daily flow).

Phase 2 will use the same strategy as Alternative 1 to increase capacity. A third fine screen will be fitted to the existing overflow channel; allowing the WNRWF to handle the 28.3 mgd projected flow. An overflow channel will be added in this phase. Table 7.6-3 shows the projected flowrates to the IBRWF or a PWWP for the ultimate design.

Flows	Max Month ADF (mgd)	Summer ADF (mgd)	Winter ADF (mgd)	Annual ADF (mgd)
Flows To WNRWF (+)	7.2	6.9	5.1	5.7
WN Disposal Capabilities (-)	0.8	0.8	0.8	0.8
Net Pumped Flow to IBRWF or PWWP	6.4	6.1	4.3	4.9

 Table 7.6-3:
 Alternative 2 Flow Balance for Ultimate Design

To account for diurnal flow variations, the Transfer Pumping Station will be sized for a maximum month average daily flow of <u>9.6 mgd</u> (150% of the projected maximum month average daily flow).

7.7 RECOMMENDED IMPROVEMENTS FOR ALTERNATIVES 3 AND 4

The influent wastewater flowrates to the WNRWF for Alternatives 3 and 4 are identical to those for Alternative 2. The two phase upgrade schedule will be designed for 2030 design flows and ultimate design flows, which are summarized in Table 7.7-1 below.

Entity	Year 2030 (mgd) ⁽¹⁾	Ultimate Design (mgd) ⁽¹⁾
Goslee Creek	0.6	6.5
Northern WRE Expansion	N/A	1.1
WRESSD	16.7	20.7
Total	17.3	28.3

Table 7.7-1: Alternatives and 4 Projected Influent Pumping to WNRWF

Notes:

1. Pumping capacity given as peak capacity.

The influent Phase 1 wastewater will flow into a common headworks designed to handle the above 2030 design flows. The headworks and electrical will be identical to the facilities described in Section 7.6.

In Alternative 3, the screened effluent will flow to a new Transfer Pump Station like the station designed for the Alternative 1 scenario. The Transfer Pump Station facility designed for either Alternative 3 will be reduced due to a lesser pumped flowrate. Any wastewater in excess of 2.3 mgd on a maximum monthly basis will be pumped to the IBRWF for treatment and disposal. Table 7.7-2 summarizes the transfer flowrates.

For Alternative 4, the screened effluent will be separated and sent to one of two treatment trains at the WNRWF. On a maximum monthly basis, 2.3 mgd will be treated and discharged through the existing partially aerated lagoon system and discharged via spray irrigation. Any flow above the 2.3 mgd threshold will be sent to a new treatment facility

on site that is capable of achieving biological nutrient removal. Due to the RBSTP permit limits, biological nutrient removal treatment will be required for all treated wastewater to be discharged via the ocean outfall. Due to limited space on the existing treatment facility property, a treatment operation with a small footprint, such as membrane biological reactors (MBR) or sequencing batch reactors (SBR) would likely be required. The new treatment train would also include disinfection and solids handing, if required. A new pump station will be constructed to pump the treated effluent to the Rehoboth Beach ocean outfall. Table 7.7-2 summarizes the transfer flowrates.

Flows	Max Month ADF (mgd)	Summer ADF (mgd)	Winter ADF (mgd)	Annual ADF (mgd)
Flows To WNRWF (+)	4.4	4.2	3.1	3.5
WN Disposal Capabilities (-)	2.3	2.2	1.6	1.8
Net Pumped Flow from WNRWF ⁽¹⁾	2.1	2.0	1.5	1.7

Table 7.7-2:Alternatives 3 and 4 Flow Balance for 2030

Note:

1. For Alternative 3 excess wastewater would be pumped to the IBRWF. For Alternative 4 treated effluent would be pumped to the Rehoboth Beach ocean outfall.

To account for diurnal flow variations, the Transfer Pumping Station will be sized for maximum month average daily flow of 3.2 mgd (150% of the projected maximum month average daily flow).

For the Ultimate Design flow the proposed headworks, treatment, pump facilities will be increased as necessary. Table 7.7-3 summarizes the pumping capacity required to accommodate the Ultimate Design flowrates.

Table 7.7-3:	Alternatives 3 and 4 Flow Balance for Ultimate Design

Flows	Max Month ADF (mgd)	Summer ADF (mgd)	Winter ADF (mgd)	Annual ADF (mgd)
Flows To WNRWF (+)	7.2	6.9	5.1	5.7
WN Disposal Capabilities (-)	2.3	2.2	1.6	1.8
Net Pumped Flow from WNRWF ⁽¹⁾	4.9	4.7	3.5	3.9

Note:

1. For Alternative 3 excess wastewater would be pumped to the IBRWF. ForvAlternative 4 treated effluent would be pumped to the Rehoboth Beach ocean outfall.

To account for diurnal flow variations, the Transfer Pumping Station will be sized for a maximum month average daily flow of <u>7.4 mgd</u> (150% of the projected maximum month average daily flow).

7.8 WOLFE NECK RWF UPGRADE PRLEMINARY COST ESTIMATES

Wolfe Neck RWF will need to increase its preliminary treatment capacity to be able to handle the projected influent flow rates. This section discusses the methodology and presents the capital costs for the recommended improvements for both Alternative 1 and Alternative 2. The conceptual design will allow the WNRWF to accommodate the projected 2030 flows. All dollar amounts are presented in year 2009 dollars.

Several different sources of information were consulted to develop the capital cost estimations. Where recent contractor bids or vendor proposals are available for similar projects, they have been used. If neither contractor bids nor proposals are available, quantity takeoffs were computed based on the conceptual designs described in sections 7.5 through 7.7.

Costs described in this section are based on conceptual design. As such, a level of detail appropriate to such a design was considered during the development of costs. Conceptual design does not provide the resolution needed for quantification of all construction materials. In recognition of this fact, percentages of construction cost have been applied to such items as piping, electrical, and site work. The percentages used for these items are summarized below:

- A 10% contingency was included with all construction costs.
- Yard Piping: 9% of subtotal.

- Electrical: 20% of subtotal.
- Planning, Engineering, and Administrative Services: 22% of subtotal.

Tables 7.8-1 through 7.8-3 below summarize the total capital costs for the WNRWF Headworks and Treatment upgrade for all four Alternatives.

Description	Estimated Cost
Civil	\$65,000
Structural	\$151,000
Building Cost	\$47,000
Screening Equipment	\$634,000
Flow Measuring Equipment	\$40,000
Plumbing	\$10,000
Subtotal	\$947,000
Yard Piping @ 9% of Subtotal	\$85,000
Electrical @ 20% of Subtotal	\$189,000
Site work @ 3% of Subtotal	\$28,000
Startup @ 2% of Subtotal	\$19,000
Subtotal	\$1,267,000
General Conditions @ 5% of Subtotal	\$63,000
Overhead @ 10% of Subtotal	\$133,000
Profit @ 5% of Subtotal	\$67,000
Subtotal	\$1,530,000
Contingency @ 10% of Subtotal	\$153,000
Total Construction Cost (Year 2009 Dollars)	\$1,683,000
Planning, Engineering, and Admin @ 22% of Subtotal	\$370,000
Total Project Cost (Year 2009 Dollars)	\$2,050,000

Table 7.8-1: Estimated Alternative 1 Phase 1 Headworks Probable Project Cost

Table 7.8-2: Estimated Alternatives 2, 3, and 4 Phase 1 Headworks Probable

Project Costs

Description	Estimated Cost
Civil	\$56,000

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

Chapter 7

Structural	\$114,000
Building Cost	\$38,000
Screening Equipment	\$542,000
Flow Measuring Equipment	\$40,000
Plumbing	\$10,000
Subtotal	\$800,000
Yard Piping @ 9% of Subtotal	\$72,000
Electrical @ 20% of Subtotal	\$160,000
Site work @ 3% of Subtotal	\$24,000
Startup @ 2% of Subtotal	\$16,000
Subtotal	\$1,073,000
General Conditions @ 5% of Subtotal	\$54,000
Overhead @ 10% of Subtotal	\$113,000
Profit @ 5% of Subtotal	\$56,000
Subtotal	\$1,296,000
Contingency @ 10% of Subtotal	\$130,000
Total Construction Cost (Year 2009 Dollars)	\$1,430,000
Planning, Engineering, and Admin @ 22% of Subtotal	\$314,000
Total Project Cost (Year 2009 Dollars)	\$1,740,000

Table 7.8-3: Es	stimated Alternative 4	Phase 1 Treatment	Probable Project Costs
-----------------	------------------------	-------------------	-------------------------------

Description	Estimated Cost
Total Treatment Costs @ \$10 per gallon	\$21,000,000
Total Project Cost (Year 2009 Dollars)	\$21,000,000

The civil site work includes the fill required to raise the headworks area to match the existing berm elevation, as well as any bedding and paving costs. Structural costs consist of the concrete needed for the facility and building costs include items such as aluminum grating and stairs. The screening equipment includes almost all of the mechanical equipment inside the headworks: mechanical screens and a manual bar rack, screenings conveyor, slide gates, a hoist, dumpster and insulation and heat tracing for all of the equipment that will require it. Flow measuring equipment includes the flow meter itself as well as a vault to house the device. All other costs were calculated as a percentage of

the subtotals and construction costs. Appendix D contains a detailed cost estimate for the headworks for both Alternative 1 and Alternative 2.

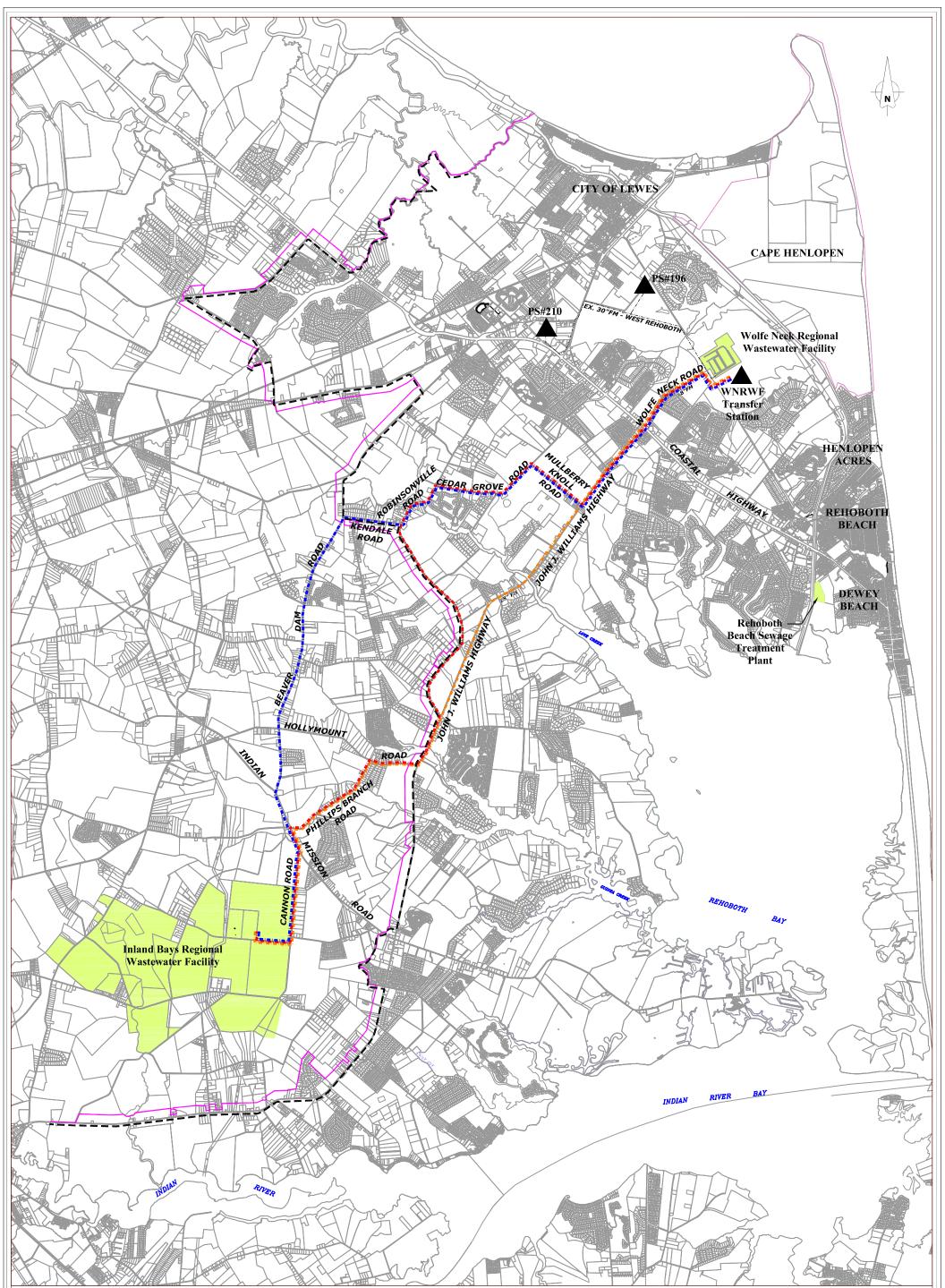
A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

Chapter 7

8. WOLFE NECK BAYS CONVEYANCE SYSTEM

This chapter presents the alternative alignments and associated costs for conveying flows from the WNRWF to either the IBRWF (Alt. 1A,2A,3), PWSP (Alt 1B, 2B), or a combined City/County ocean outfall (Alt 4). A Hazen-Williams "C-factor" of 140 is used for all hydraulic computations for new PVC pipeline and a "C-factor" of 100 for DIP. The target design velocity for all force mains is 3 to 5 feet per second (ft/s). All flow projections referenced in this chapter are provided in Appendix B.

Cost estimates are provided for Wolfe Neck Conveyance system for the various alternatives. However, this conveyance system is just one component of the cost sharing model as further described in Chapter 10.


8.1 ALTERNATIVE 1A, 2A, AND 3

8.1.1 ALIGNMENT ALTERNATIVES

Three alignments were evaluated for the conveyance of wastewater from the WNRWF to the IBRWF Figure 8.1.1-1 indicates three potential force main alignments from the WNRWF to the IBRWF.

Alignment Option #1 involves the installation of approximately 58,900 lf of force main south from the WNRWF along Wolfe Neck Road, crossing underneath Coastal Highway along John J. Williams Highway to Hollymount Road, where it will run west to Phillips Branch Road, then southwest to Indian Mission Road, then south to Cannon Road and then west on Inland Bays Road to the IBRWF headworks.

Alignment Option #2 involves the installation of approximately 72,600 lf of force main along a similar alignment to the intersection of John J. Williams Highway and Mullberry Knoll Road, where it will run west to Cedar Grove Road and then south along

Whitman, Requardt & Associates LLP

in association with

LEGEND

Aligment Option #1

- Aligment Option #2
- Aligment Option #3
- ---- Existing Infrastructure
- Inland Bays Planning Area Boundary
- Environmentally Sensitive Development Area

N:\13947-000\CADD\Civil\WNRWF to IBRWF FM_Alignments.dwg

JOINT SUSSEX COUNTY/CITY OF REHOBOTH BEACH LAND APPLICATION PROJECT

Figure 8.1-1 October 2009

Robinsonville Road to the intersection of John J. Williams Highway. From this point, it will follow the same alignment as Option #1 to the IBRWF headworks.

Alignment Option #3 involves the installation of approximately 68,600 lf of force main following a similar alignment as Option #2 to the intersection of Robinsonville Road and Kendale Road, at which point it will run west to Beaver Dam Road, then south to Indian Mission Road. From this point it will follow the same alignment as Options #1 and #2 along Indian Mission Road to the IBRWF headworks.

8.1.2 FORCE MAIN HYDRAULICS

As outlined in Chapter 7, the Wolfe Neck transfer pump station for Alt. 1A (raw wastewater), Alt. 2A (treated effluent) and Alt. 3 (County only flows) will be required to pump 6.9 mgd, 5.4 mgd, and 3.2 mgd respectively in year 2030. Table 8.1.2-1 summarizes the hydraulic calculations for all three treatment alternatives for all three alignment options in year 2030.

Treatment Alternative					Alignment Option #1 John J. Williams Highway (SR.24)		oment on #2 sonville CR 277)	Optio Beave	ument on #3 r Dam SR 23)
	Peak Q (mgd)	FM Size (in)	Vel. ⁽¹⁾ (ft/s)	Length (ft)	TDH ⁽¹⁾ (ft)	Length (ft)	TDH ⁽¹⁾ (ft)	Length (ft)	TDH ⁽¹⁾ (ft)
Alt 1A	6.9	24	3.7	58,900	155	72,600	178	68,600	171
Alt 2A	5.4	24	2.9	58,900	118	72,600	133	68,600	129
Alt 3	3.2	18	3.0	58,900	150	72,600	172	68,600	160

 Table 8.1.2-1:
 Alternative 1A, 2A and 3 Hydraulics Summary

Notes:

1.

Velocities and head losses are based on C-900 PVC reduced interior diameters (i.e. 23" inside diameter for a 24"FM).

The velocities and head conditions presented in these tables represent a preliminary evaluation, as the final length of the alternative route will impact actual headlosses. A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT Chapter 8

Based on this information the recommended force main size is 24-inches for Alt. 1A and 2A and 18-inches for Alt. 3.

There is the potential for a portion of these proposed force mains to be shared with a proposed Angola Neck Sanitary Sewer District Regional Force Main, which is slated for construction in the spring of 2010. This force main follows the same alignment as Option #1 from the intersection of Robinsonville Road (CR 277) and John J. Williams Highway (SR 24) down to the IBRWF. The portion of this force main from Indian Mission Road (SR 5) to the IBRWF could be shared with alignment Option #3.

8.1.3 PUMP STATION DESIGN

The proposed stations in these alternatives would be designed as a three pump station, with two pumps operating and one stand-by pump. Table 8.1.3-1 summarizes the ranges of pump sizes required each alignment option.

	Alignment Option #1 HP Range (per pump)	Alignment Option #2 HP Range (per pump)	Alignment Option #3 HP Range (per pump)
Alternative 1A	160-185	185-250	185-250
Alternative 2A	90-110	160-185	160-185
Alternative 3	80-100	160-185	80-100

 Table 8.1.3-1 Preliminary Pump Size

Notes:

1) Horsepower ranges supplied are based on preliminary pump selections, assuming a three pump station with two pumps operating and 1 stand-by.

The proposed pumping station for either Alt. 1A or Alt. 2A from the WNRWF to the IBRWF would be large regional pump stations, involving a cast-in-place wetwell with external valve vault and a small control building to house the electrical equipment. Alt. 3 would involve a smaller station with pre-cast wetwell and valve vault structures.

8.1.4 COST ESTIMATES

To account for varying installation conditions, traffic control, and road restoration and requirements, each FM alignment was broken into the following four categories from most expensive to least expensive:

- Major Highway Construction
- Intermediate Highway Construction
- County Road Construction
- Easement Construction

Cost estimate breakdowns for the proposed force mains for each alignment option are provided in Appendix E. Table 8.1.4-1 provides a summary of each alternative.

	<u> </u>
Force Main Alignment	Estimated Total Project Cost
Option #1 - John Williams Highway	\$18,122,000
Option #2 – Robinsonville Road	\$19,298,000
Option #3 – Beaver Dam Road	\$17,493,000

Table 8.1.4-1 WNRWF to IBRWF Force Main Cost Summary

Based on these cost estimates, Option #3 appears to be the most cost effective alignment. Option #1 is the shortest alignment, but would present the most challenging construction conditions due to the high traffic nature of John J. Williams Highway, along with the significant number of unknowns along this roadway. Option #3 is the preferred alignment as far as overall cost and constructability. One disadvantage of Option #3 is it provides the least amount of potential shared costs with the imminent Angola Neck SSD Force Main to IBRWF.

Cost estimate breakdowns for the proposed pumping stations from the WNRWF to the IBRWF are provided in Appendix E. Table 8.1.4-2 provides a summary of both alternatives.

Estimated Total				
Force Main Alignment	Project Cost			
Alternative 1A (Raw Wastewater PS)	\$3,300,000			
Alternative 2A (Treated Effluent PS)	\$3,050,000			
Alternative 3 (County Only)	\$2,680,000			

 Table 8.1.4-2 Pumping Station Cost Summary

8.1.5 SUMMARY

Table 8.1.5-1 provides a summary of the alignment options for the WNRWF to IBRWF alternatives. As stated previously, alignment Option #3 is the preferred alignment.

Chapter 8

Description	<u>Option 1</u> John Williams Highway (SR	<u>Option 2</u> Robinsonville Road	<u>Alternative 3</u> Beaver Dam Road		
	24)	(CR 277)	(SR 23)		
Total length	58,900 feet	72,600 feet	68,600 feet		
Size	24 inch	24 inch	24 inch		
Pavement restoration length	43,825 feet	41,700 feet	37,850 feet		
Potential County Shared Costs	25,400 lf	25,400 lf	10,700 lf		
Environmental Ranking	3	2	1		
Operation and Maintenance Ranking	1	3	2		
Crossings					
Major Roadway Crossings	 Coastal Highway John J. Williams Hwy. 	 Coastal Highway John J. Williams Hwy. 	1) Coastal Highway		
Major Stream Crossings	1) Love Creek 2) Burton Prong	1) Burton Prong	None		
Minor Stream Crossings	3	6	5		
Construction					
Major Highway Installation	28,750	10,800	7,100		
Intermediate Highway Installation	1,700	5,000	28,550		
County Road Installation	28,450	56,800	32,950		
Installation Ranking 3		2	1		
Easements					
Temporary Easements	Yes	Yes	Yes		
Permanent easements	Yes	Yes	Yes		

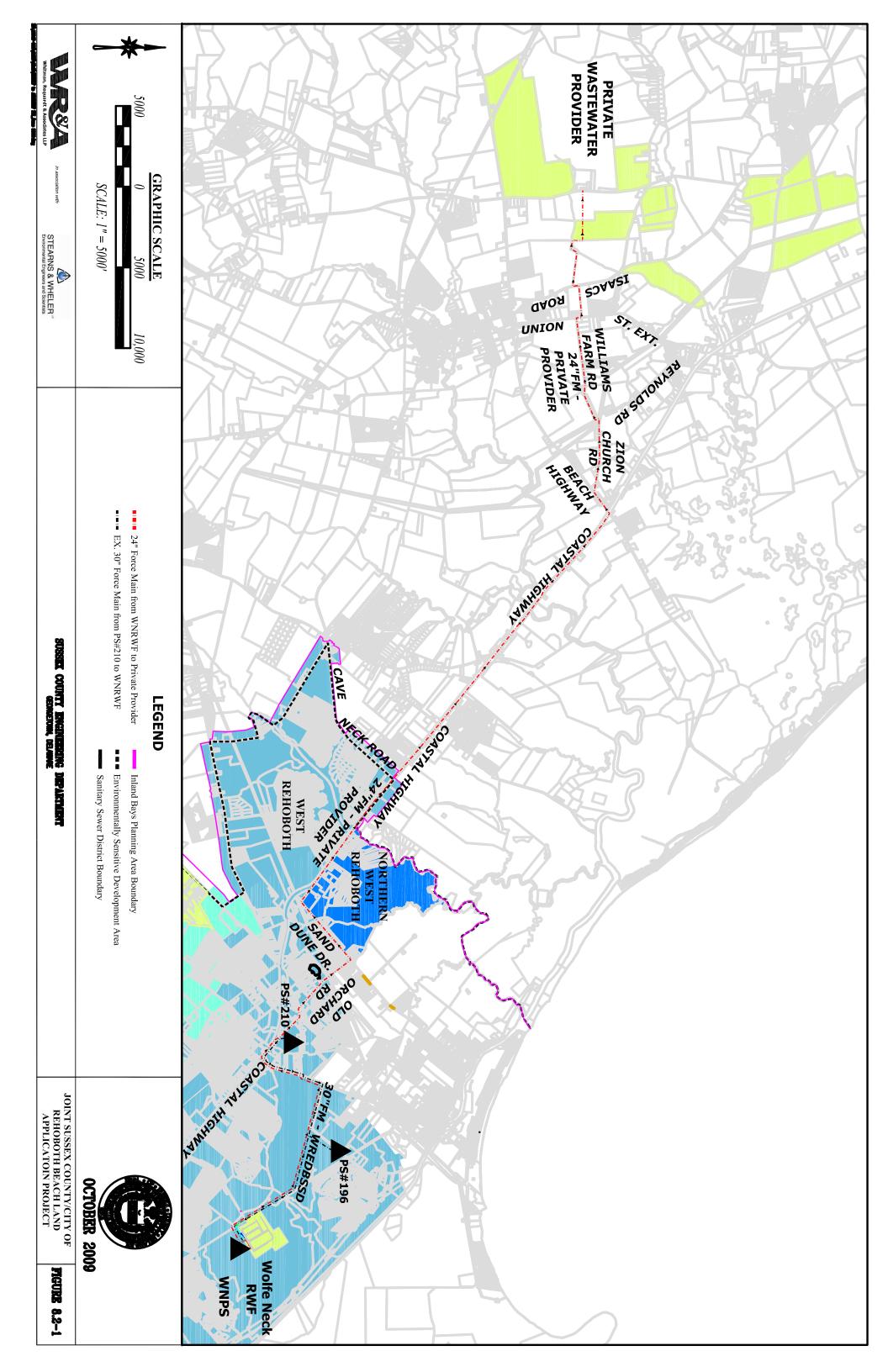
Notes:

1) Major Roadway Installation refers to John J. Williams Highway, Intermediate Roadway Installation refers to Beaveer Dam Road and Indian Mission Road, County Road Installation refers to installation along all other County Roads.

2) Pavement restoration length was obtained assuming 100% restoration in Major Highways and 50% restoration elsewhere.

8.2 ALTERNATIVE 1B AND 2B

8.2.1 ALIGNMENT ALTERNATIVES


Only one alignment was evaluated to go from the WNRWF to the Private Wastewater Provider's (PWWP) treatment and disposal site. This alignment is indicated on Figure 8.2-1 and is based on a contract proposal received from Artesian Wastewater Services. Similar to Alternatives 1A and 2A, a transfer pumping station will be required at the WNRWF to accept flow in excess of the plant's capacity. This pumping station will pump through a 24-inch force main, approximately 82,000 LF to the treatment and disposal lands. The PWWP has proposed a booster pumping station at the intersection of Coastal Highway and Cave Neck Road in order to accept flow from outside the County's planning area. This station has been excluded from this report since it would provide capacity for flows that are not being contributed by the County.

8.2.2 FORCE MAIN HYDRAULICS

The transfer station for Alt. 1B (raw wastewater) and Alt. 2B (treated effluent) will be required to pump 6.9 mgd and 5.4 mgd respectively in year 2030. Table 8.2.2-1 summarizes the hydraulic calculations for both treatment alternatives.

Treatment Alternative	Peak Q	FM Size	Vel. ⁽¹⁾	Length	TDH ⁽¹⁾
	(mgd)	(in)	(ft/s)	(ft)	(ft)
Alt 1B	6.9	24	3.7	82,000	194
Alt 2B	5.4	24	2.9	82,000	143

Table 8.2.2-1: Alternative 1B and 2B Hydraulics Summary

The velocities and head conditions presented in these tables represent a preliminary evaluation, as the final length of the alternative route will impact actual headlosses. Based on this information the recommended force main size is 24-inches for both Alt. 1B and 2B.

8.2.3 COST ESTIMATES

Cost estimate breakdowns for the proposed alignment option are provided in Appendix E. This estimate was broken into two sections to maintain constancy with what was presented by the PWWP. Table 8.2.3-1 provides a summary for each section.

Force Main Alignment	Estimated Total Project Cost				
Section #1 – WNRWF to Cave Neck Road	\$9,240,000				
Section #2 – Cave Neck Road to the					
PWWP site	\$11,820,000				
Total	\$21,060,000				

 Table 8.2.3-1 WNRWF to PWWP Force Main Cost Summary

As compared to Alternatives 1A and 2A, Alternative 1B and 2B would result in higher costs due to larger pumps and associated electrical gear. This is due to the higher associated TDH from the longer pumping distance. However, the costs for the pump station structures and mechanical piping would be similar. Cost estimate breakdowns for Alt. 1B and 2B stations were assumed to be the same as those previously presented for Alt. 1A and 2A respectively.

8.3 ALTERNATIVE 4

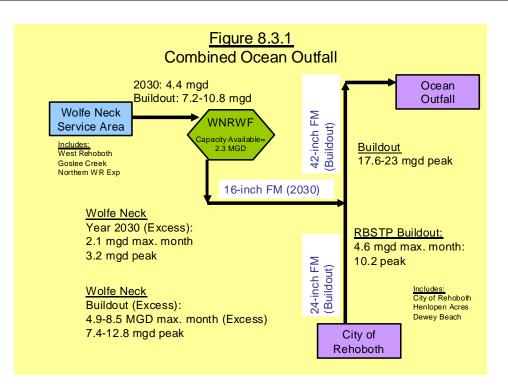
8.3.1 ALIGNMENT

For Alternative 4, all flows from the West Rehoboth District and future Goslee Creek District would be treated at the WNRWF. All excess flows that could not be disposed of at the WNRWF would be disposed of through a combined City/County ocean outfall. For this analysis, it is assumed that the force main from the Wolfe Neck Transfer PS would manifold into the Rehoboth force main and be conveyed by a common effluent force main to the ocean outfall.

In chapter 5, two alignment options were reviewed for the proposed force main from Rehoboth to WNRWF, with alignment option #1 chosen as the recommended alternative. This same alignment corridor would be recommended for the alternative alignment from WNRWF to Rehoboth. See Chapter 5 for alignment specifics.

8.3.2 FORCE MAIN HYDRAULICS

To remain consistent with the cost analysis performed for other alternatives, the WNRWF to Rehoboth FM was sized for year 2030 flows. For the WNWRF, the projected 2020 maximum month flow is 4.4 mgd (based on 150 gpd/EDU). Similar to other alternatives, it was assumed that 2.3 mgd would be disposed of at the WNRWF and the rate to be pumped by the Wolfe Neck Transfer Pump Station is 150% of the excess maximum month or 1.5*(4.4 mgd-2.3 mgd) = 3.2 mgd. This 2030 flowrate would require a 16-inch FM from the WNTPS to the Rehoboth effluent force main manifold.


All ocean outfall alternatives presented by Rehoboth were based on buildout flows of 3.4 mgd for maximum month and 10.2 mgd at an instantaneous peak. For these flows, a 24-inch effluent force main and ocean outfall was recommended in the Rehoboth Beach Alternative Discharge Evaluation. For the combined City/County ocean outfall, all flows

were also analyzed on a buildout basis. The buildout design for the WNRWF has been projected at 7.2 mgd based on 150 gpd/EDU. Assuming 2.3 mgd is disposed of at the WNRWF, the peak County contribution to the outfall would be (7.2 mgd-2.3 mgd)*1.5=7.4 mgd. The combined City/County flow through the effluent force main and outfall would be <u>17.6 mgd</u>. Based on this design rate, the effluent force main and ocean outfall would need to be 36-inches at a design velocity of approximately 4 ft/s.

If Alternative 4 is implemented, considering the expense of installing the ocean outfall and the amount of potential growth within the WNRWF service area, the impacts of using a higher flowrate may need to be reviewed. For example, at a future flow contribution of 225 gpd/EDU, the maximum month average daily flow increases to 10.8 mgd. This would increase the County contribution to the effluent force main and outfall to (10.8 mgd -2.3 mgd)*1.5=<u>12.8 mgd</u> and the total flow to the outfall to <u>23 mgd</u>. At this flowrate, the design flowrate through a 36-inch outfall would be 5 ft/s or through a 42-inch outfall would be almost 4 ft/s. Using a 42-inch would be most conservative, but could also cause issues due to low initial velocities. If Alternative 4 is implemented, a more detailed evaluation would be required to determine the final effluent force main/outfall size. Regardless, for this study, the more conservative 42-inch was assumed. Figure 8.3.1 indicates this configuration.

8.3.3 FORCE MAIN HYDRAULICS

From the previous Figure 8.3.1, the WNTPS would pump against losses from its own 16inch FM as well the competing heads from the Rehoboth pump station through the effluent force main and ocean outfall. It was assumed that the effluent force main and ocean outfall is non –PVC (i.e. DIP or concrete encased steel). Preliminary hydraulic calculations were performed based on this configuration and assuming a static head of 10feet going from the IBRWF to the ocean outfall. For the 3.2 mgd peak design flow, pumping heads would vary from 70 to 85-feet depending on the size of the effluent force main and outfall (i.e. 36 or 42 inches). This would require the installation of three 50-70 HP pumps.

8.3.4 COST ESTIMATES

Cost estimate breakdowns for the force main alignment are provided in Appendix E. Based on this, the estimated total project cost for the 16-inch is \$2.3M. Based on previous A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

Chapter 8

County pump stations of this size, the Alternative 4 Wolfe Neck Transfer Pump Station costs have been estimated at approximately \$2.3M.

Cost breakdowns for the effluent force main and Ocean Outfall for both Alternatives 3 and 4 are outlined in Table 8.3.4-1. Alternative 3 costs are from the Rehoboth Beach Alternative Discharge Evaluation. Costs for Alternative 4 were developed based on an upsizing of the effluent force main and ocean outfall from 24-inches to 42-inches. The upsizing costs for 12,100 l.f. of effluent force main were based on recent bids from other projects. The upsizing cost for the Ocean Outfall was assumed to be \$300/l.f. to primarily account for increased material costs.

Component	Alt. 3	Alt. 4
Effluent Force Main	\$2,560,000	\$6,160,000
Effluent FM Contingency (10%)	\$256,000	\$616,000
Effluent FM Subtotal	\$2,816,000	\$6,776,000
Outfall	\$14,800,000	\$16,600,000
Outfall Contingency (15%)	\$2,220,000	\$2,490,000
Outfall Subtotal	\$17,020,000	\$19,090,000
Outfall permitting (5% of outfall subtotal)	\$850,000	\$950,000
Engineering/Admin (22% of Effluent FM and Outfall Subtotal)	\$4,360,000	\$5,690,000
Project Total	\$25,050,000	\$32,510,000

Table 8.3.4-1 WNRWF to PWWP Force Main Cost Summary

9. INLAND BAYS REGIONAL WASTEWATER FACILITY IMPACTS

9.1 INTRODUCTION

The Inland Bays Regional Wastewater Facility (IBRWF) is a partially aerated lagoon treatment facility with effluent spray irrigation. It currently serves the Long Neck SSD (LNSSD) and the Oak Orchard SSD (OOSSD). Sussex County has recently started designing the facility upgrade and expansion necessary to accommodate the growth in these districts and the planned Angola Neck SSD (ANSSD), the Oak Orchard Expassion Area #1 (OOEA#1), as well as future anticipated flow from the Herring Creek SSD (HCSSD).

The expansion is designed to be completed in three phases, the timing of which depends on the growth of its service districts and the solution chosen for RBSTP and WNWRF. To comply with the recent Inland Bays TMDL requirements and to ensure total nitrogen loading does not limit spray field capacity before hydraulic loading rates do, process improvements at the IBRWF are planned. The existing treatment lagoons will be converted into phased aeration lagoons, followed by secondary clarifiers using an activated sludge process. This is expected to reduce effluent TN concentrations to 10 mg/L or below. This reduction will allow the IBRWF to load the irrigation fields to their hydraulic limit without exceeding either the permitted nitrogen loading rate of 250 lbs/ ac/yr or the Inland Bays TMDL percolate requirement of 5.0 mg/L or less as an annual average.

To remain in compliance with its effluent spray irrigation limits, the IBRWF has acquired over 2,000 acres of agricultural land for effluent disposal; over 700 acres of this land will be used to accommodate the facility's short term expansion. The additional property acquired is expected to bring the total short term effluent disposal capacity to 5.2 mgd using spray irrigation. A detailed hydrogeological soil survey has not been completed on the long term expansion lands, but preliminary studies estimate that it provides

approximately 7.8 mgd of effluent disposal capacity using spray irrigation. Combined with the short term storage capacity, the property owned by the County at the IBRWF provides an estimated spray irrigation disposal capacity of approximately 13.0 mgd. Additional capacity could be obtained with the purchase of additional property for spray irrigation or the use of alternative disposal methods at this site.

Table 9.1-1 summarizes the phased expansion approach and lists the total effluent disposal capacity for each.

Design Phase	Added Disposal Acreage per Phase	Total Disposal Capacity (mgd)
Current	206	1.5
Phase 1	150	2.1
Phase 2	203	3.7
Phase 3A	190	5.2
Phase 3B	To be determined ⁽¹⁾	6.0

 Table 9.2-2:
 IBRWF Expansion Phases and Disposal Capacity

Note:

1. A detailed hydrogeolocial soil survey will be completed prior to determining the area required for additional effluent disposal capacity.

Please reference the Inland Bays PER for a detailed explanation on the upgrade and expansion. The possibility of wastewater from additional service areas being sent to IBRWF will affect the expansion schedule, but not the treatment design. The possible alternatives for the NCPA discussed in this report will each impact the IBRWF uniquely. The scenarios discussed in this chapter are presented from the least impact to the most impact on the IBRWF expansion schedule.

A. Either Alternatives 1B, 2B, or 4 is chosen. RBSTP and WNRWF create a separate solution that does not involve IBRWF. These solutions could be either ocean outfall or an off-site PWTP. IBRWF will expand according to its original schedule.

- B. Alternative 3 is chosen. RBSTP devises a separate solution independent of WNRWF or IBWRF. WNWRF would send all raw wastewater in excess of 1.8 mgd on an annual basis (2.3 mgd on a maximum month basis) to IBWRF for treatment and disposal. This is based on the analysis that using existing facultative aerated lagoon treatment system, the effluent disposal capacity at the WNRWF will be nitrogen limited at 1.8 mgd on an annual average basis.
- C. Alternative 1A is chosen. The RBWWPS and WNRWF SSDs will send all raw wastewater flow greater than 1.8 mgd on an annual basis (2.3 mgd on a maximum month basis) to IBRWF for treatment and disposal. The IBRWF will receive an increased raw wastewater flow because the RBWWPS raw wastewater is included in the flow to WNRWF.
- D. Alternative 2A is chosen. All raw wastewater flow greater than 0.8 mgd from the WNRWF SSDs will be sent to Inland Bays for treatment and disposal.

9.2 SCENARIO A

Scenario A entails RBSTP and WNRWF choosing a solution that does not involve the IBRWF. To accomplish this, RBSTP and WNRWF will likely choose to dispose of treated effluent either by discharging it to an ocean outfall (Alt. 4), or off-site spray irrigation (Alt. 1B or 2B). Regardless of the disposal mechanism, the timeline for the expansion of the IBRWF will be based on the wastewater flow projections from the districts currently served or planned for service by this facility (ANSSD, HCSSD, LNSSD, OOSSD).

The current maximum month flow received at the IBRWF is 0.7 mgd (July 2005). With the continued growth of the LNSSD and OOSSD and the addition of the ANSSD and HCSSD, the IBRWF service area influent flows will increase substantially in the future.

Based on 150 gpd/ EDU for all existing and future EDUs, projected 2030 flow rates are summarized in Table 9.2-1.

Service Districts	Max Month ADF (mgd) ⁽¹⁾	Summer ADF (mgd) ⁽²⁾	Winter ADF (mgd) ⁽³⁾	Annual ADF (mgd) ⁽⁴⁾
LNSSD	1.8	1.7	1.1	1.4
OOSSD	0.48	0.45	0.28	0.36
ANSSD	0.50	0.47	0.30	0.37
HCSSD	0.09	0.08	0.05	0.06
Total	2.90	2.7	1.7	2.1

Table 9.2-1: Projected 2030 Flows for IBRWF Contributing Entities

Notes:

1. Max month ADF based on growth projecting using 150 gpd/ EDU for existing and future connections.

2. Summer ADF determined by applying observed IBRWF 1.1:1 max month ADF to summer ADF ratio to projected max month ADF.

3. Winter ADF determined by applying observed IBRWF 1.6:1 summer ADF to winter ADF ratio to projected summer ADF.

4. Annual ADF determined by applying observed IBRWF 1.4 max month ADF to annual ADF ratio to projected max month ADF.

The ultimate projected wastewater flow to the IBRWF under this scenario is 6.3 mgd on a maximum monthly basis.

Figure 9.2-1 shows the projected IBRWF flows vs. the disposal capacities for each expansion phase.

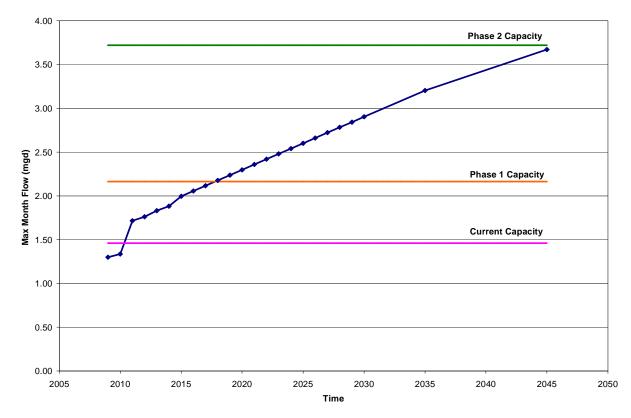


Figure 9.2-1: Scenario A IBRWF Projected Flows and Expansion Timeline

The Phase 1 expansion has recently entered the design phase and will be completed in time to accommodate the increased flows through 2017. As indicated on Figure 9.2-1 the Phase 2 expansion will be sufficient to treat the projected influent flows through 2045. The ultimate build out flow of 6.3 mgd (not shown) will require additional treatment and disposal capacity at the IBRWF.

9.3 SCENARIO B

In Scenario B, the RBSTP will not transfer any wastewater or treated effluent to either the WNRWF or the IBRWF. If this is chosen, the RBSTP will likely discharge its treated effluent via an ocean outfall (Alt. 3). The WNRWF will continue to treat all incoming wastewater and dispose of it using spray irrigation until the annual average daily flow exceeds 1.8 mgd. At this flowrate, the WNRWF irrigation fields will become nitrogen

limited and the remaining wastewater will be sent to the IBRWF for treatment. Table 9.3-1 shows the contributing entities and their associated flows to the IBRWF.

Service Districts	Max Month ADF (mgd) ⁽¹⁾	Summer ADF (mgd) ⁽²⁾	Winter ADF (mgd) ⁽³⁾	Annual ADF (mgd) ⁽⁴⁾
LNSSD	1.8	1.7	1.08	1.4
OOSSD	0.48	0.45	0.28	0.36
ANSSD	0.50	0.47	0.30	0.37
HCSSD	0.09	0.08	0.05	0.06
WNRWF ⁽⁵⁾	2.1	1.9	1.5	1.7
Total	5.0	4.7	3.2	3.8

 Table 9.3-1:
 Scenario B 2030 Projected Influent Flowrates to IBRWF

Notes:

1. Max month ADF based on growth projection using 150 gpd/ EDU for existing and future connections.

2. IBRWF summer ADF determined by applying observed IBRWF 1.1:1 max month ADF to summer ADF ratio to projected max month ADF.

3. IBRWF winter ADF determined by applying observed IBRWF 1.6:1 summer ADF to winter ADF ratio to projected summer ADF.

4. IBRWF annual ADF determined by applying observed IBRWF 1.4:1 max month ADF to annual ADF ratio to projected max month ADF.

5. WNRWF flows are determined using observed seasonal flow ratios (Table 3.2-3)

The ultimate projected wastewater flow to the IBRWF under this scenario is 11.2 mgd on a maximum monthly basis.

Using growth projections, the entire expansion timeline will be accelerated. WNRWF will start sending raw wastewater to IBRWF as soon as a transfer pumping station and forcemain can be constructed (likely 2012). Both Phase 1 and Phase 2 expansions will need to be completed by that time. The Phase 3A expansion will be required by 2022, with Phase 3B after 2035. If IBRWF accepts flow from WNWRF an additional expansion, Phase 4, will also be required. To accommodate the ultimate build out flowrate of 11.2 mgd, an extensive upgrade or new treatment facility will be required in the future. Figure 9.3-1 shows the expansion timeline for scenario B.

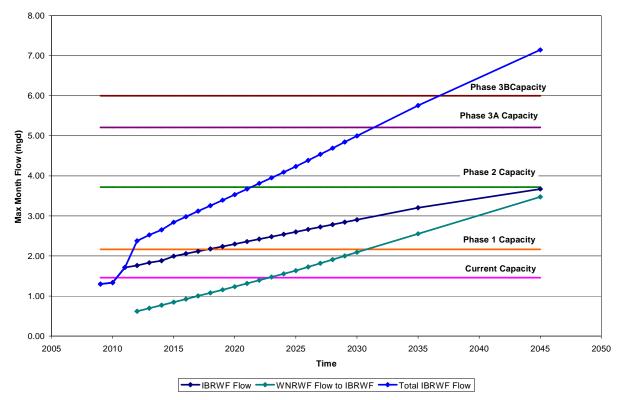


Figure 9.3-1: Scenario B IBRWF Projected Flows and Expansion Timeline

Due to the short interval in between when Phases 1 and 2 are required, there may be cost savings associated with immediately beginning the design on Phase 2 so construction of the expansions can be simultaneous or continuous. Before the Phase 3 expansion is required soil investigations and hydrogeological studies on the Cordrey parcel will need to be performed. If this scenario is chosen, it may be more cost effective to build a new treatment facility to accommodate the ultimate build out wastewater flows, rather than expanding the IBRWF further.

9.4 SCENARIO C

In Scenario C, Alternative 1A is chosen to manage RBSTP and WNWRF wastewater. The RBSTP will shut down and the RBWWPS will be constructed to send raw wastewater to WNWRF. For the Wolfe Neck Transfer Pump Station, this option is very similar as Scenario B. At an annual average of 1.8 mgd (2.3 mgd during the maximum

Chapter 9

month), the WNRWF will become nitrogen limited and any additional wastewater will be transferred to the IBRWF. Table 9.4-1 shows the contributing entities and their associated flows to the IBRWF.

Service Districts	Max Month ADF (mgd) ⁽¹⁾	Summer ADF (mgd) ⁽²⁾	Winter ADF (mgd) ⁽³⁾	Annual ADF (mgd) ⁽⁴⁾
LNSSD	1.8	1.7	1.08	1.4
OOSSD	0.48	0.45	0.28	0.36
ANSSD	0.50	0.47	0.30	0.37
HCSSD	0.09	0.08	0.05	0.06
WNRWF ⁽⁵⁾⁽⁶⁾	4.6	4.3	2.4	3.1
Total	7.5	7.0	4.1	5.2

Table 9.4-1: Scenario C 2030 Projected Influent Flowrates to) IBRWF
--	---------

Notes:

1. Max month ADF based on growth projection using 150 gpd/ EDU for existing and future connections.

2. Summer ADF determined by applying observed IBRWF 1.1:1 max month ADF to summer ADF ratio to projected max month ADF.

3. Winter ADF determined by applying observed IBRWF 1.6:1 summer ADF to winter ADF ratio to projected summer ADF.

4. Annual ADF determined by applying observed IBRWF 1.4:1 max month ADF to annual ADF ratio to projected max month ADF.

5. WNRWF flows are determined using observed seasonal flow ratios (Table 3.2-3).

6. WNRWF includes the projected 2030 flows from the RBWWPS.

The ultimate projected wastewater flow to the IBRWF under this scenario is 14.6 mgd on a maximum month basis.

Because the RBSTP is contributing raw wastewater to the WNRWF, more flows relative to Scenario B will have to be transferred to the IBRWF. To comply with their permit, the IBRWF will need to construct expansion Phases 1 and 2 as soon as possible (likely 2012). Assuming RBSTP start sending raw wastewater to te WNRWF in 2014, the total incoming IBRWF flow is 4.1 mgd; expansion Phase 3 will need to be completed by that time. To accommodate the projected 2030 influent flow rate of 7.5 mgd, a fourth expansion phase will be required. Similarly to Scenario B, the County may want to explore a new treatment facility to accommodate the ultimate build out wastewater flowrate of 14.6 mgd. Figure 9.4-1 displays when the IBRWF flows will exceed the disposal capacities for each expansion phase.

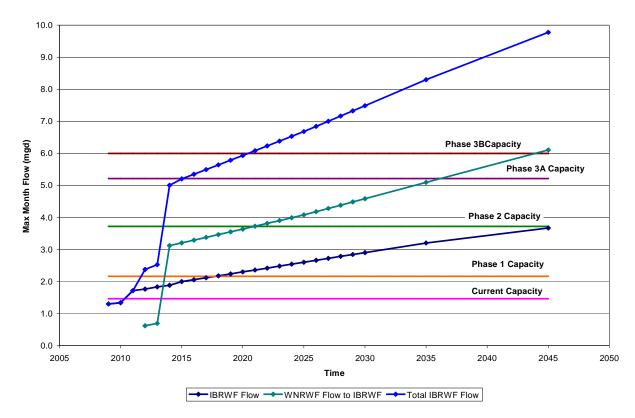


Figure 9.4-1: Scenario C IBRWF Projected Flows and Expansion Timeline

This timeline assumes that the RBSTP will start sending raw wastewater to WBRWF in 2014. If RBSTP starts transferring war wastewater prior to 2014, the IBRWF will need to expand sooner. This situation would most likely dictate simultaneous construction of multiple expansion phases. Under this scenario, the ultimate projected wastewater flow to the IBRWF cannot be accommodated by spray irrigation at the existing site.

9.5 SCENARIO D

Alternative 2A is chosen for Scenario D. In this scenario the RBSTP will continue treating wastewater and will send the treated effluent directly into the WNRWF effluent storage lagoon to be discharged via spray irrigation. The other WNRWF contributing entities (GC, WRESSD, etc) and WRESSD contributions will be limited to

approximately 0.8 mgd year round, and all excess flow will be transferred to IBRWF for treatment and disposal. Table 9.5-1 shows the contributing entities and their associated flows to IBRWF.

Service Districts	Max Month ADF (mgd) ⁽¹⁾	Summer ADF (mgd) ⁽²⁾	Winter ADF (mgd) ⁽³⁾	Annual ADF (mgd) ⁽⁴⁾
LNSSD	1.8	1.7	1.08	1.4
OOSSD	0.48	0.45	0.28	0.36
ANSSD	0.50	0.47	0.30	0.37
HCSSD	0.09	0.08	0.05	0.06
WNRWF ⁽⁵⁾	3.6	3.4	2.3	2.7
Total	6.5	6.1	4.0	4.8

Table 9.4-1: Scenario D 2030 Projected Influent Flowrates to IBRWF

Notes:

1. Max month ADF based on growth projecting using 150 gpd/ EDU for existing EDUs and future connections.

2. Summer ADF determined by applying observed IBRWF 1.1:1 max month ADF to summer ADF ratio to projected max month ADF.

3. Winter ADF determined by applying observed IBRWF 1.6:1 summer ADF to winter ADF ratio to projected summer ADF.

4. Annual ADF determined by applying observed IBRWF 1.4:1 max month ADF to annual ADF ratio to projected max month ADF.

5. WNRWF flows are determined using observed seasonal flow ratios (Table 3.2-3).

The ultimate projected wastewater flow to the IBRWF under this scenario is 15.9 mgd on a maximum month basis.

This scenario sends the second most wastewater to IBRWF; scenario C sends approximately 1 more. WNRWF would start sending wastewater in excess of 1.8 mgd on an annual average basis (2.3 mgd during the maximum month) to the IBRWF once the transfer pump station and force main are constructed, assumed to be 2012; both Phases 1 and 2 will be required by that time. The will RBSTP begin sending treated effluent to the WNRWF for disposal by 2014. At this time, the WNRWF only continue to treat and discharge 0.8 mgd, all excess wastewater will be sent to Inland Bays. This will increase the total wastewater influent at IBRWF to 4.1 mgd, requiring the Phase 3 upgrade to be completed by this time. Depending on the schedule for the RBSTP to stop discharging to the Lewes-Rehoboth Canal, this timeline could be further accelerated. Given the

schedule proximity of the necessary expansions, some cost savings could be gained by designing and constructing multiple phases simultaneously. Under this scenario, the total influent to the IBRWF is 6.5 mgd in 2030, which will require an additional expansion. Additional treatment and disposal capacity will be required to treat the ultimate build out projected influent flowrate of 15.9 mgd. Figure 9.5-1 illustrates this expansion timeline with the associated flows.

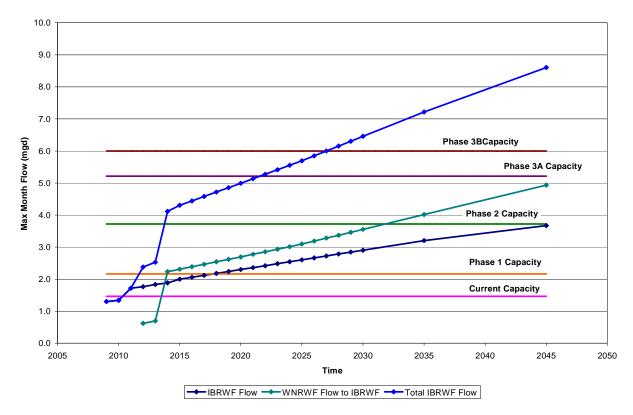


Figure 9.5-1: Scenario D IBRWF Projected Flows and Expansion Timeline

Under this scenario, the ultimate projected wastewater flow to the IBRWF cannot be accommodated by spray irrigation at the existing site.

9.6 PLANNED IMPROVEMENTS FOR THE INLAND BAYS RWF

As described in Section 9.1 the County is beginning the design of upgrading and expanding the IBRWF. The planned improvements for the treatment facility will enable the IBRWF to achieve biological nutrient removal and increase its treatment and disposal capacity. Please reference the Inland Bays PER for more detailed information about the improvements planned for the facility.

To enable the facility to handle increased influent flows, the headworks will be expanded to add an additional mechanical screen as part of each expansion phase. A grit removal system will be installed as part of the Phase 2 expansion.

To achieve biological nutrient removal, each phase of expansion will convert one existing partially aerated treatment lagoon into two phased-aeration treatment lagoons. Circular clarifiers will be constructed (two in Phase 1, one each in Phases 2 and 3) to separate the activated sludge from the wastewater. Clarified effluent will be disinfected via chlorination in a new chlorine contact tank. The treated wastewater will enter effluent lagoons to be stored until it can be discharged via spray irrigation.

Phase 2 expansion will include solids handling facilities capable of achieving Class A biosolids. Waste sludge will be pumped to holding lagoons to achieve preliminary thickening. Thickened sludge will subsequently undergo dewatering (likely by a belt filter press) and lime pasteurization. The treated biosolids will be dried and stored as cake to be distributed to regional farmers.

Auxiliary improvements will also be constructed as necessary. This includes structures such as the distribution boxes for the raw influent and clarifiers, chemical storage, sludge pumping stations, and an improved electrical and process control infrastructure.

Inland Bays Upgrade and Expansion Preliminary Cost Estimates

This section discusses the methodology and presents the capital costs for the recommended improvements for Phase 1 through 3 expansions. All dollar amounts are presented in year 2009 dollars.

Several different sources of information were consulted to develop the capital cost estimations. Where recent contractor bids or vendor proposals are available for similar projects, they have been used. If neither contractor bids nor proposals are available, quantity takeoffs were computed based on the conceptual designs described in this chapter and the Inland Bays PER.

Costs described in this section are based on conceptual design. As such, a level of detail appropriate to such a design was considered during the development of costs. Conceptual design does not provide the resolution needed for quantification of all construction materials. In recognition of this fact, percentages of construction cost have been applied to such items as piping, electrical, and site work. The percentages used for these items are summarized below:

- A 10% contingency was included with all construction costs.
- Yard Piping: 9% of subtotal.
- Electrical: 20% of subtotal.
- Planning, Engineering, and Administrative Services: 22% of subtotal.

In addition to the percentages listed above, several other assumptions had to be made regarding the construction of the facilities. Major assumptions made during this process are bulleted below:

- Distribution boxes for unit processes would be constructed during Phase 2 for the Phase 3B design flows to simplify future construction.
- Solids handling facilities will be built in Phase 2 and sized to accommodate Phase 3B

flows.

- The grit removal system will be built in Phase 2 to handle Phase 3B flows.
- A new building would be constructed during Phase 1 for the sodium hypochlorite disinfection system and would include space provisions for future bulk storage tanks and chemical feed systems.
- It was assumed piles would not be required under concrete structures, based on our experience with other facilities constructed in the area.

Phase 3B specific costs were not developed because most of the required process expansions are included in previous phases. There is not sufficient site information for Phase 3B to develop detailed costs for effluent storage and disposal.

Tables 9.6-1 through 9.6-3 summarize the costs for the IBRWF Phase 1 through 3 expansions, respectively.

DESCRIPTION	ESTIMATED COST
Screening	\$540,000
Biolac Treatment System (Convert Treatment Lagoon No. 1)	\$1,800,000
Secondary Clarifiers	\$1,650,000
RAS/ WAS Pump Station	\$370,000
Chlorine Contact Tank	\$270,000
Chemical Feed System	\$570,000
New Storage Lagoon	\$1,700,000
Irrigation Pumping Station	\$1,070,000
Subtotal	\$8,000,000
General Site Work @ 3% of Subtotal	\$240,000
Yard Piping @ 9% of Subtotal	\$720,000
Electrical/Controls @ 20% of Subtotal	\$1,600,000
Startup/Testing @ 2% of Subtotal	\$160,000
Parcels #12 and # 19 Spray Field Development	\$560,000
Subtotal	\$11,300,000
Construction Contingencies @ 10% of Subtotal	\$1,100,000
Total Construction Cost (Year 2009 Dollars)	\$12,400,000
Project Costs @ 22% of Construction Cost	\$2,700,000
Total Project Costs (Year 2009 Dollars)	\$15,100,000

 Table 9.6-1: Cost Summary for Phase 1 Expansion

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

DESCRIPTION	ESTIMATED COST
Screening	\$540,000
Grit Removal	\$880,000
Influent Dist Box	\$370,000
Biolac Treatment System (Convert Treatment Lagoon 2)	\$1,800,000
Secondary Clarifier Distribution Box	\$370,000
Secondary Clarifiers	\$1,070,000
RAS/ WAS Pump Station	\$370,000
Chlorine Contact Tank	\$400,000
New Storage Lagoon	\$2,610,000
Irrigation Pumping Station	\$870,000
Solids Handling System	\$3,920,000
Waste Sludge Holding Lagoon (Convert Lagoon 3)	\$690,000
Cake Storage Building	\$370,000
Administration Building Expansion	\$740,000
Subtotal	\$15,000,000
General Site Work @ 3% of Subtotal	\$450,000
Yard Piping @ 9% of Subtotal	\$1,350,000
Electrical/Controls @ 20% of Subtotal	\$3,000,000
Startup/Testing @ 2% of Subtotal	\$300,000
FM to Spray Field #10	\$195,000
Parcel # 10 Spray Field Development	IBRWF
Subtotal	\$20,300,000
Construction Contingencies @ 10% of Subtotal	\$2,000,000
Total Construction Cost (Year 2009 Dollars)	\$22,300,000
Project Costs @ 22% of Construction Cost	\$4,900,000
Total Project Costs (Year 2009 Dollars)	\$27,200,000

Note:

1. Budgetary cost allocation provided by Sussex County. Conceptual design of these components has not been completed.

Chapter 9

DESCRIPTION	ESTIMATED COST
Screening	\$540,000
Biolac Treatment System (Convert WAS Lagoon)	\$1,200,000
Secondary Clarifiers	\$1,070,000
Chlorine Contact Tank	\$290,000
New Storage Lagoon	\$2,300,000
Irrigation Pumping Station	\$1,170,000
Waste Sludge Holding Lagoons	\$1,540,000
Subtotal	\$8,100,000
General Site Work @ 3% of Subtotal	\$240,000
Yard Piping @ 9% of Subtotal	\$730,000
Electrical/Controls @ 20% of Subtotal	\$1,620,000
Startup/Testing @ 2% of Subtotal	\$160,000
Cordrey Parcel Spray Field Development	\$1,840,000
Subtotal	\$12,700,000
Construction Contingencies @ 10% of Subtotal	\$1,300,000
Total Construction Cost (Year 2009 Dollars)	\$14,000,000
Project Costs @ 22% of Construction Cost	\$3,100,000
Total Project Costs (Year 2009 Dollars)	\$17,100,000

Table 9.6-3: Cost Summary for Phase 3A Expansion

10. SUSSEX COUNTY/REHOBOTH BEACH COST SHARING MODEL

This chapter will present the cost sharing model developed between the City of Rehoboth and Sussex County for the six identified treatment and disposal alternatives. This cost model was developed to estimate the financial implications of each of these alternatives to Sussex County and the City of Rehoboth Beach. Flow schematics and associated descriptions for each of the six alternatives (Alt. 1A, 1B, 2A, 2B, 3, and 4) previously discussed are provided. In addition, as discussed in the following sections, a 7th alternative (Alternative 4B) has been added for cost sharing discussion purposes.

• Alternative 1A/1B: The RBSTP shuts down and sends all of its raw wastewater to the WNRWF, which will treat as much wastewater as possible and send the excess to another facility to be treated. The excess wastewater will be treated by the County owned and operated Inland Bays Regional Wastewater Facility (Alt 1A) or a Private Wastewater Provider (PWWP) (Alt 1B).

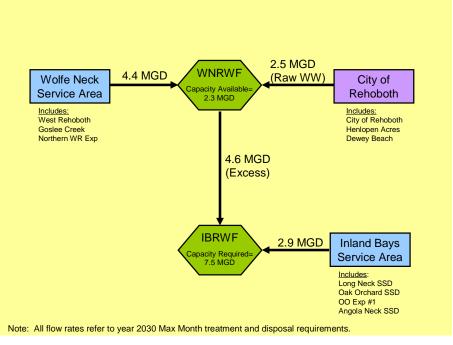


Figure 10-1: Alternative 1A Flow Distribution Diagram

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT

Chapter 10

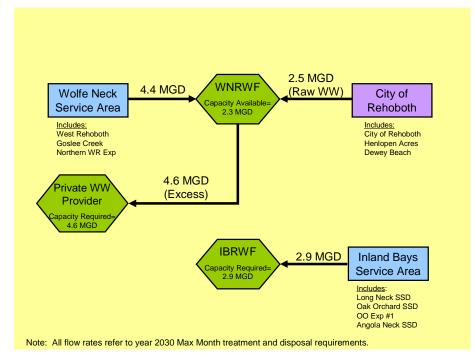


Figure 10.1-2: Alternative 1B Flow Distribution Diagram

• Alternative 2A/2B: The RBSTP remains in service and sends its treated effluent to the WNRWF for disposal via spray irrigation. A reduced amount of WNRWF influent wastewater from its service area will continue to be treated at that facility, with all excess being sent to either to the Inland Bays Regional Wastewater Facility (Alt 2A) or a PWWP (Alt 2B).

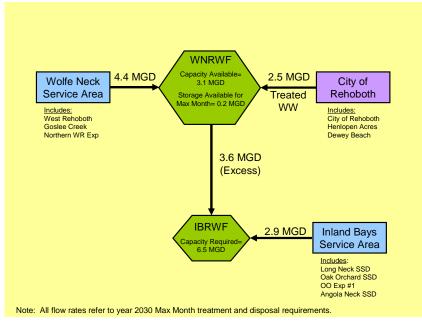


Figure 10.1-3: Alternative 2A Flow Distribution Diagram

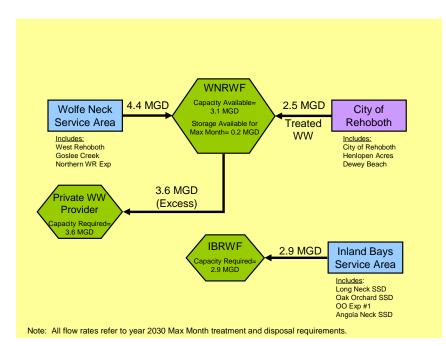


Figure 10.1-4: Alternative 2B Flow Distribution Diagram

• Alternative 3: The RBSTP remains in service and discharges treated effluent via an ocean outfall. In this scenario, the County will continue treating and disposing wastewater via land application at its existing facilities. The WNRWF will

remain in service and continue treating and disposing wastewater from its service area. Any excess flow to the WNRWF above the capacity of the facility will be sent to the IBRWF for treatment and disposal.

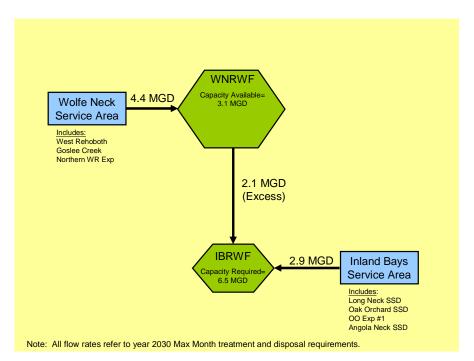


Figure 10.1-5: Alternative 3 Flow Distribution Diagram

• Alternative 4: The RBSTP remains in service and discharges treated effluent via an ocean outfall. The County continues to treat wastewater via land application at the WNRWF. The WNRWF will expand and upgrade its treatment capacity. Treated wastewater that exceeds the WNRWF disposal capacity will be pumped to the Rehoboth ocean outfall for disposal.

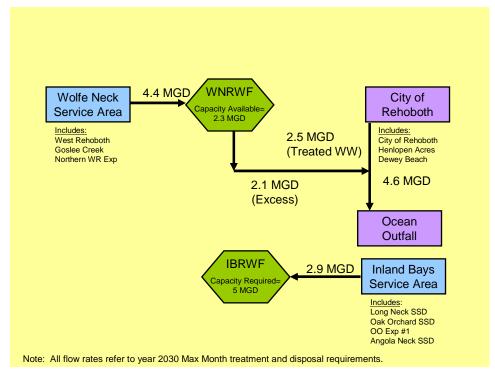


Figure 10.1-6: Alternative 4 Flow Distribution Diagram

• Alternative 4B: Alternative 4B is the same treatment and disposal concept as Alternative 4, with the exception of what flows are used for the cost sharing analysis. All other alternatives use the maximum month 2030 year flows. Alternative 4B uses <u>buildout</u> maximum month flows.

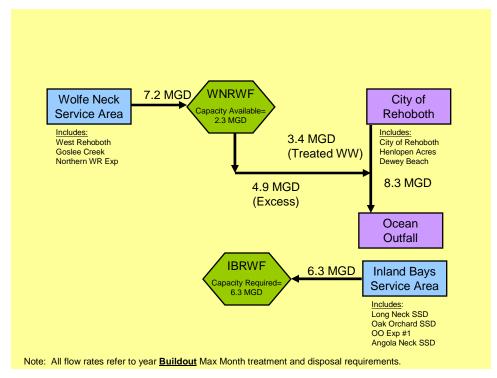


Figure 10.1-7: Alternative 4B Flow Distribution Diagram

10.1 ANNUAL USERS COSTS

Total annual user costs for each alternative were evaluated based on anticipated initial capital costs, the associated project costs and contingencies, contract service costs associated with the private provider option and the long term operation and maintenance costs. All of these components are discussed in the following sections.

10.1.1 CAPITAL COSTS

Each of the seven alternatives has specific required conveyance and treatment/disposal components. Capital costs associated with each of these components were discussed in the previous chapters as follows:

- Chapter 5: Rehoboth to WNRWF Conveyance Costs
- Chapter 7: WNRWF Upgrades Costs

- Chapter 8: WNRWF to IBRWF/PWWP Conveyance Costs
- Chapter 9: IBRWF Upgrades

The following Table 10.1.1-1 summarizes the capital cost components used for the cost sharing analysis.

Item #	Description	Chapter Discussed		
1	RBSTP Pumping Station	5		
2A	Force Main from RBSTP to WNRWF (Option #1)	5		
2B	Force Main from WNRWF to Rehoboth (Option #1)	8		
ЗA	Rehoboth Treatment Upgrades	NA ⁽¹⁾		
3B	Rehoboth FM to Ocean Outfall	NA ⁽¹⁾		
3C	Rehoboth Ocean Outfall	NA ⁽¹⁾		
4	WNRWF Upgrades	7		
5	WNRWF Headworks Upgrades	7		
6	WNRWF to IBRWF/PSP P.S.	8		
7	Force Main to IBRWF (Option #3)	8		
8	IBRWF Phase 2 Upgrades	9		
9	IBRWF Phase 3 Upgrades	9		
10	IBRWF Phase 4 Upgrades	9		
11A	Force Main to Cave Neck Road	8		
11B	Force Main from Cave Road to PWWP	8		

Notes:

(1) From 2009 Rehoboth Beach Alternative Discharge Evaluation

As described in Chapters 5 and 8, for several of the alternatives, there were several alignment options reviewed. For the cost sharing analysis it was assumed that the recommended alignment would be implemented. Items indicated in parentheses, such as for the Force Main to WNWRF (Option 1), are in reference to the alignment options recommended in the other sections.

All costs for the IBRWF Phase 1 Expansion were excluded from this analysis. The Phase 1 expansion is currently in the design phase and is primarily being implemented to service customers in the existing IBRWF service area and is therefore independent of this cost sharing analysis.

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT Chapter 10

10.1.2 PROJECT COSTS AND CONTINGENCIES

Additional project costs and contingencies associated with each alternative included the items listed in Table 10.1.2-1

Item #	Description
12	PWWP Treatment and Disposal
13	Land/Easements
	10% Contingency (All Items Except
14A	Ocean Outfall and RBSTP)
	15% Contingency (Ocean Outfall and
14B	RSTP Upgrade Only)
15	Engineering and Administration
16	Permitting (Ocean Outfall Only) (5%)

 Table 10.1.2-1: Project Cost Components for Cost Sharing Analysis

Costs for Item 12 were based on the Private Wastewater Provider's Contract Proposal received by the County in December 2008.

For Item 13, if either Alternative 1A and 2A was implemented, the City of Rehoboth Beach would be required to reimburse the County for its equivalent amount of land required for disposal. This value has been estimated at \$11.25M for 450 acres of land at \$25,000 per acre. Easement costs and engineering costs for the PWWP alternatives (Alternatives 1B and 2B) were based on the December 2008 PWWP proposal. There are no land sharing costs associated with Alternative 3 (Rehoboth outfall) or Alternative 4 (combined ocean outfall).

As indicated in Table 10.1.2-1, a 10% contingency was included for all capital costs items, with the exception of Rehoboth items #3A and #3C. As specified by the City of Rehoboth, a 15% contingency was applied to these two items per the Rehoboth Beach Alternative Discharge Evaluation. The outfall permitting costs were also in accordance with the Rehoboth Beach Alternative Discharge Evaluation.

A Regional Planning Report to Assess a Joint Sussex County/City of Rehoboth Land Application Project - DRAFT Chapter 10

Engineering and administration costs were allocated as 22% of construction costs, with the exception of the PWWP, which was based on the Private Wastewater Provider's Contract Proposal.

10.1.3 COST SHARE PERCENTAGES

Cost share percentages were calculated for each project cost line item. In general, cost percentages were calculated based on the 2030 maximum month average daily flow associated with each line item. As such, the City of Rehoboth Beach will be responsible for 100% of the RBSTP pumping station and the associated force main to the WNRWF. The cost for the WNRWF transfer pumping station, its associated force main, and any treatment/disposal costs will be split between the County and the City of Rehoboth Beach on a 2030 maximum month flow rated basis unless noted below.

- 1. All costs for the WNRWF headworks upgrade are split on a flow rated basis, with the exception of Alternatives 2A and 2B (treated effluent alternatives). For these alternatives, the treated effluent from Rehoboth is only disposed of and bypasses the WNRWF headworks facility. Therefore, Rehoboth would not share in any of the headworks upgrades costs.
- 2. For treatment costs associated with Alternatives 1A and 2A, the City of Rehoboth is displacing disposal capacity at County facilities for County sewer customers and would be responsible for the applicable costs of treatment and disposal capacity at the IBRWF. For example, in Alternative 1A, the County would provide Rehoboth 2.5 mgd of treatment/disposal capacity. Phase II upgrades will increase the IBRWF's treatment and disposal capacity from 2.0 mgd to 3.7 mgd (max month). Phase III upgrades will increase the plant capacity from 3.7 mgd to 5.2 mgd. It was assumed that the City of Rehoboth would be responsible for 100% of Phase II upgrades, and 53% (or 0.8 mgd) of Phase III upgrades.
- 3. As discussed previously, for Alternative 4B, the buildout maximum month is used to calculate flow splits associated with the Rehoboth effluent force main and

ocean outfall. This changes the County/City flow split from 46/54 for Alt 4 to 59/41 for Alt 4B.

Tables summarizing the resulting percentages used for all seven alternatives (Alt. 1A, 1B, 2A, 2B, 3, 4, and 4B) are included in Appendix L.

10.1.4 OPERATION AND MAINTENANCE COSTS

Annual operation and maintenance costs were estimated for each alternative. For all \$/gallon Sussex County annual costs, a value of 450 mg/year was used as the average annual flow for the current 2030 planning period. For all \$/gallon PWWP annual costs, a value of 730 mg/year was used. This is based on a minimum 2 mgd annual average charge required by the PWWP. Table 10.1.4-1 summarizes each of these components.

•		Applicable
Item	Cost/Year	Alternatives
Rehoboth - Plant Operations	\$1,590,000	All
Rehoboth – Collection System	\$150,000	All
Sussex County WNRWF Pump Station		Alt 1A, 1B
Maintenance	\$100,000	
Sussex County Operations and		Alt 1A
Maintenance – Treatment and Disposal	\$5.08/1,000 gal	
Private Service Provider - Treatment and		Alternative #1B,
Disposal ⁽¹⁾	\$6.84/1,000 gal	#1C
Sussex County Operations and		Alternative #1B,
Maintenance- Conveyance Only to		#1C
PWWP	\$1.21/1000 gal	
Sussex County Operations and		Alt 2A
Maintenance- Conveyance System		
(Disposal Only) ⁽²⁾	\$2.00/1,000 gal	
Rehoboth - Pump Station, FM and Outfall	\$150,000	Alt 3 & 4,4B

 Table 10.1.4-1: O&M Components for Cost Sharing Analysis

Notes:

(1) The agreement specifies an annual increase of 3% or the CPI, whichever is greater.

(2) Includes WNWRF PS maintenance.

10.2 PROJECTED USER RATES

Based on the estimated capital costs, O&M costs, and cost share percentages, Rehoboth's anticipated user rates were calculated for each of the alternatives. Rehoboth's rates were calculated assuming 56.3% of all plant operations costs and 92.5% of all collection system costs were paid for by Rehoboth customers. The remainder of costs (43.7% and 7.5% respectively) will be paid for by County customers (i.e. Dewey Beach, Henlopen Acres, and North Shore) that are served through the Rehoboth system. These percentages were estimated in the Rehoboth Beach Alternative Discharge Evaluation based on flow contributions from each entity. User rates were calculated assuming a 20 year loan at a 4.4% interest rate, which was the financing option presented in the Rehoboth Beach Alternative Discharge Evaluation.

Table 10.2-1 on the following page provides a summary of the resulting County/Rehoboth Costs, as well as the anticipated Rehoboth User Rates. Backup tables for all alternatives are provided in Appendix L.

An additional financing option to the one presented in the Rehoboth Beach Alternative Discharge Evaluation was also evaluated. This option assumes 1/3 of the loan is financed for 20 years at a 4.4%, with the remaining 2/3 of the loan financed for 40 years at 5%. Table 10.2-2 provides a City of Rehoboth user rate comparison for the two financing options.

Alt.	Description	Total Project Cost (\$ M)	County Cost Share (\$ M)	Rehoboth Cost Share (\$ M)	Annual Capital Cost - Rehoboth	Annual Maintenance Cost- Rehoboth	Rehoboth User Rates
#1A	Raw Wastewater Pumped to WNRWF with Disposal at IBRWF	\$112	\$44	\$68	\$2,900,000	\$1,500,000	\$1,160
#1B	Raw Wastewater Pumped to WNRWF with Disposal at Private Service Provider	\$100	\$50	\$50	\$2,100,000	\$3,300,000	\$1,430
#2A	Treated Effluent Pumped to WNRWF with Disposal at IBRWF	\$103	\$48	\$54	\$2,300,000	\$1,500,000	\$1,010
#2B	Treated Effluent Pumped to WNRWF with Disposal at Private Service Provider	\$91	\$54	\$37	\$1,600,000	\$3,800,000	\$1,420
#3	Rehoboth Pumps to Ocean Outfall Alternative with County Pumping to IBRWF	\$94	\$64	\$30	\$1,300,000	\$1,100,000	\$630
#4	Rehoboth and County Pump to Common Outfall with County Continuing to use IBRWF for Southern Service Area (2030 Max. Month)	\$87	\$64	\$23	\$1,000,000	\$1,100,000	\$550
#4B	Rehoboth and County Pump to Common Outfall with County Continuing to use IBRWF for Southern Service Area (Buildout Max. Month)	\$87	\$68	\$19	\$800,000	\$1,100,000	\$500

Table 10.2-1: Impacts of Alternatives on City of Rehoboth User Rates ^{(1) (2)}

Notes:

(1) All annual capital costs, maintenance costs, and users rates are based on 4.4% for 20 years.

(2) All total project costs, annual costs and user rates are rounded to the nearest \$1M, \$0.1M, and \$10 respectively.

Alt.	Description	Rate/Year: (SRF 4.4% for 20 years)	Rate/Year: 1/3 SRF @ 4.4% for 20 years & 2/3 RD @ 5% for 40 years
#1A	Raw Wastewater Pumped to WNRWF with Disposal at IBRWF	\$1,160	\$1,040
#1A	Raw Wastewater Pumped to WNRWF with Disposal	φ1,100	\$1,040
#1B	at Private Service Provider	\$1,430	\$1,340
#2A	Treated Effluent Pumped to WNRWF with Disposal at IBRWF	\$1,010	\$920
#2B	Treated Effluent Pumped to WNRWF with Disposal at Private Service Provider	\$1,420	\$1,360
#3	Rehoboth Pumps to Ocean Outfall Alternative with County Pumping to IBRWF	\$630	\$580
#4	Rehoboth and County Pump to Common Outfall with County Continuing to use IBRWF for Southern Service Area (Based on 2030 max. Month)	\$550	\$510
	Rehoboth and County Pump to Common Outfall with County Continuing to use IBRWF for Southern		
#4B	Service Area (Based on Buildout max. Month)	\$500	\$470

Table 10.2-2 : 0	Comparison (of Financing	Options ⁽¹⁾
------------------	--------------	--------------	-------------------------------

Notes:

(1) Rates have been rounded to the nearest \$10.

Table 10.2-3 provides a summary of the resulting impact on County User Rates for Alternatives 2, 3 and 4.

	Dewey Beach User Rates		Henlopen Acres User Rates		City of Rehoboth Beach User Rates	
Alternative	Existing New Rate Rate (1)		Existing Rate	New Rate (1)	Existing Rate	New Rate (2)
#2A	\$350	\$770	\$588	\$1,460	\$325	\$1,010
#2B	\$350	\$1,210	\$588	\$1,750	\$325	\$1,420
#3	\$350	\$540	\$588	\$1,030	\$325	\$630
#4	\$350	(3)	\$588	(3)	\$325	\$550
#4B	\$350	(3)	\$588	(3)	\$325	\$550

Table 10.2-3 : Impacts of Alternatives on County Rates

Notes:

(1) New rates have been rounded to the nearest \$10 and are based on a 40 year loan at 5%,

(2) New rates have been rounded to the nearest \$10 and are based on a 20 year loan at 4.4%,

(3) Not evaluated to date

10.3 CONCLUSIONS

Based on the analysis conducted for this study, the following observations are provided.

10.3.1 ALTERNATIVES 1A AND 2A (COUNTY SPRAY ALTERNATIVES)

If spray irrigation is chosen as the method of treatment and disposal by Rehoboth, it appears that Alternative 2A (treated effluent) would be the most cost effective alternative. The main advantage of Alternative 1A would be that the City of Rehoboth could take their existing treatment plant off-line; However the lost treatment capacity would have to be reconstructed elsewhere as a result. Alternative 2A is less expensive from a user rate standpoint.

10.3.2 ALTERNATIVES 1B AND 2B (PWWP ALTERNATIVES)

A public/private partnership with a PWWP (Alt 1B or 2 B) does not appear to be cost effective as compared to other alternatives from a user rate perspective. While the initial capital costs are lower, the long term service agreement and O&M costs create user rates that are significantly higher for Alt. 1A and 1B as compared to all other alternatives. Some additional unknowns with the PWWP include:

- Future cost increases. Per the draft proposal provided by Artesian, for 3 years from the initial service date, the initial bulk rate (i.e. \$6.84/1,000 gallons) will be adjusted for inflation at a variable rate. This variable rate will be either 3% or the % change in the consumer price index over the 3 year time period, whichever is greater. After this 3 year period, a cost of service adjustment could be requested from the Public Service Commission to further rate increases. Neither inflation nor potential cost increases have been accounted for in this analysis.
- Term of conditions. The term of conditions is 25 years.

• Minimum flow rate: The draft proposal requires a minimum annual flowrate of 2.0 mgd (or 730 mgal/year). The projected 2030 annual average flow rates for the RBSTP and the WNRWF are 1.40 mgd and 2.15 mgd respectively, for a total annual average of 3.55 mgd. The annual average treatment and disposal capacity used in this analysis for the WNRWF is 1.8 mgd. Thus, unless treatment and disposal is reduced at the WNRWF, the annual average being sent to the PWWP in year 2030 would be 1.75 mgd (or 639 mgal/year) and the County would never reach, but would still be paying fees associated with the minimum annual flowrate throughout the current 2030 planning period.

10.3.3 ALTERNATIVES 3, AND 4/4B (OCEAN OUTFALL ALTERNATIVES)

For the City of Rehoboth, the most cost effective alternative appears to be the combined ocean outfall (Alt. 4 or 4B). The inclusion of the County provides an opportunity for cost sharing and a reduction in user rates as compared to all the other alternatives. However, there may be other non-economic factors such as public perception or permitting which may impact the City's final decision.

For the County, the costs of for a combined ocean outfall verses conveyance and treatment/disposal at the IBRWF (Alternative 3) are essentially equal. However, all costs incurred by the City have an impact on user rates for County customers served through the City. Other general pros and cons for Alternatives 3 and 4 are as follows:

- Alternative 4/4B would provide the County with multiple methods of disposal (land disposal and ocean discharge).
- The County has already made a capital investment in land at the IBRWF. Buildout flow projection estimates for the current IBRWF service area range from 6.3 to 9.5 mgd on a maximum month basis depending on future flow/EDU contributions. Based on preliminary estimates, the disposal capacity of the lands purchased by the County is 13 mgd. If Alternative 4/4B is implemented, there

may be excess lands, which could potentially be used to provide sewer service to new areas or partner with other entities. Conversely, total buildout flows from the IBWRF and WNRWF service areas have been projected to be between 13.5 to 20.2 mgd depending on future flow/EDU contributions.

- An advanced wastewater treatment plant train with an ocean outfall (Alt 4/4B) is typically more reliable than a lagoon treatment/spray irrigation system (Alt 3) based on factors such as weather and variable soil conditions introducing higher uncertainties for spray irrigation disposal.
- The long term O&M will likely be less for Alternative 4/4B. While the cost analysis model developed did incorporate a level of O&M costs, specific costs such as increased energy consumption were not accounted for. For example, due to its longer pumping distance and greater total dynamic head (TDH), Alternative 3's energy costs would be expected to be 50% higher than Alternative 4/4B due to longer pumping distances. Based on the information on pump sizes given in Chapter 8, this corresponds to an increase in County energy costs of approximately \$20K/year for Alternative 3 as compared to Alternative 4/4B. Other O&M costs such as utility locating responsibilities and maintenance of force main appurtenances would also be expected to be higher.
- This current analysis was through year 2030. Future upgrades beyond 2030 will likely be higher for Alternative 3 as compared to 4/4B. This is due to the fact that the ocean outfall and effluent force main are assumed to be sized for buildout flows. So while 16,000 l.f. of future parallel force main would be required from the WNRWF to Rehoboth, a majority and the most costly portion of the WNRWF conveyance system would already be constructed. For Alternative 3, a future parallel 69,000 l.f. of force main from the WNRWF to the IBRWF would be required.
- For Alternative 3, the County could review upsizing the WNRWF to IBWRF force main. Based on information provided in Chapter 8, the buildout force main would be required to handle anywhere from 7.4 to 12.8 mgd based on future flow contributions. This would require a 30 to 36-inch force main, which would have

very low initial velocities, likely creating additional O&M issues. For Alternative 4/4B, while the currently proposed 36 to 42-inch effluent force main and ocean outfall is not ideal, there will be two sources of initial wastewater which will create a larger base flow. In addition, the effluent force main and ocean outfall are both conveying treated wastewater. So presumably, sedimentation issues from lower initial velocities should not be as big an issue as compared to Alternative 3.

APPENDIX A

Rehoboth Sewage Treatment Plant Data and Future Flows

1110	<u> </u>	~
1.45		ملو
	1 22	5
1000	σ.	Ŧ
1000	<u> </u>	×
68.83	•	<u> </u>
36363	ĸ	9
2139Fi	- 2	<u>Ω</u>
1000	- î	-
1000	<u> </u>	~~
		Appendix A:
1000	R	⊃⊳
1000	5	÷.
1994	<u> </u>	
64692)	\mathbf{p}	
1995	0	
	- OT	
1.1.1	- õ	
A	¥.	
11 1 C	- 51	
AN 12010		
1000	T	
101104	~~	
1000	- 92	
in the second	£ρ	
333.0	0	
	5	
微於	· · · ·	
9429	Š	
H231	•	
107816	- 2	
10.04	-	
EAR AN	8	
1000	(io	
101	Č.	
ehoboth Beac	· · ·	
151	Ì	
8.48	- i+ '	
100		
1000	- X6	
	#	
		
2013	P	
100	<u>o</u> .	
200		
5782	÷++	
1322 B	-	
10.45	. . .	
1221	5	
2/60	22	
1.11	Ε.	
	, ,	
2.59	-	
1.33	<u> </u>	
ALC: N	0	
	~	
	~	
100		
1.52		
2.20	~	
1000	斑	
1000	55	
10.00	-	
12.22	Table A-1 Rehoboth Beach Sewage Treatment Plant Flow Data 2005-2008	
	õ	
19.20	ž	
122.0	\sim	
9	ý.	
62.55	1.	
876	6	
PC-Rid	0	
1869	õ	
HEED S	~	
EMD -	90	
)ewey Bea		

11.4 0.4 6.17 0.22 14.62 0.64 7.5 0.21 14.62 0.73 3.84 0.63 0.21 22.72 0.73 3.84 0.33 0.73 3.84 0.33 30.00 1.06 23.39 0.76 0.22 0.33 0.84 0.33 13.85 0.66 0.47 6.29 0.23 0.65 0.23<	0.007 0.008 0.033 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.25 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.29 0.40 0.18 0.25 0.45 0.25	1.08 0.81 0.84 0.84 1.17 1.57 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.18 1.19 1.10 1.12 1.13 1.12 1.13 1.13 1.10 1.12 1.13 1.10 1.13 1.10 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.20 1.13 1.13 1.20 1.13 1.13 1.20 1.13		0.046 1.52 0.03 1.04 0.03 1.04 0.03 1.04 0.03 1.04 0.04 1.53 0.03 0.74 0.04 0.93 0.03 0.75 0.04 1.43 0.04 1.43 0.04 1.43 0.05 3.11 0.06 3.14 0.06 3.14 0.06 3.14 0.06 3.14 0.06 3.14 0.06 3.14 0.06 3.24 0.06 3.24 0.06 3.24 0.06 0.93 0.04 0.93 0.05 1.82 0.05 2.29 0.05 2.29 0.05 3.60 0.05 3.60 0.05 3.60 0.05 1.14 0.04 0.93
			0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04	4.13 1.6 1.6 1.6 0.7 0.88 0.7 0.7 0.88 1.16 0.7 0.88 1.16 1.16 0.7 0.88 0.88
			0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04	4.13 1.6 1.6 0.96 0.96 1.16 0.75 0.88 1.43 1.
			0.03 0.07 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.04	1.6 1.6 1.6 1.6 0.96 0.67 0.88 0.75 0.67 0.68 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.68 0.67 0.88 0.67 0.67 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.63 0.67 0.73 0.67 0.73 0.67 0.73 0.75
			0.03 0.07 0.04 0.03 0.03 0.03 0.04 0.04 0.04 0.04	1.4 1.6 1.6 0.96 0.75 0.75 1.6 0.75 0.75 1.6 0.75
			0.03 0.03 0.04 0.04 0.03 0.03 0.04 0.04	4.13 1.52 1.04 1.04 1.04 1.04 0.95 0.75 0.85 1.34 1.34 1.34 1.34 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.52 1.52 1.52 0.75 0.85 1.52 0.85 1.52 0.85 0.95 0.85 0.95 0.85 0.95 0
			0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.04	4.13 1.14 1.14 0.74 0.75 0.75 0.75 0.88 0.75 0.88 0.26
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.14 1.04 1.04 1.04 1.04 1.04 0.96 0.75 0.75 0.75 0.88 0.75 0.88 0.75 0.88 0.75 0.88 0.75 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89
			0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04	4.13 1.62 1.62 1.64 1.04 0.96 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $			0 03 0 00 0 00 0 00 0 00 0 00 0 00 0 00	4.3 1.6 1.4 0.5 0.95 0.75 0.75 0.75 0.68 1.4 1.3 1.4 3.11 1.4 1.3 1.4 3.11 1.4 1.3 1.4 3.11 1.4 0.68 1.4 3.11 1.4 0.68 1.4 1.3 1.5 0.68 1.5 0.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0
			0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.04 0.04	4.13 1.52 1.6 1.04 1.04 1.04 1.04 0.75 0.75 0.85 0.85 1.34 1.34 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.52 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.03	4.13 1.52 1.04 1.04 0.76 0.75 0.75 0.88 0.75 0.88 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04
			0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.04	4.0 1.4 1.4 0.7 0.96 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.9 0.7 0.9 0.7 0.9 0.9 0.7 0.9 0.9 0.7 0.9 0.9 0.7 0.9 0.9 0.7 0.9 0.7 0.9 0.9 0.7 0.9 0.9 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
			0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03	4.13 1.62 1.64 1.04 0.96 0.96 0.97 0.98 0.75 0.88 1.43 1.34 1.34 1.34 1.34 1.34 1.34 1.34
			0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03	4.13 1.52 1.104 1.104 0.75 0.75 0.86 0.86 1.134 1.34 1.34 2.04 3.11
			0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03	4.13 1.52 1.04 1.04 0.76 0.75 0.88 1.43 1.43
			0.03 0.06 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04	4.13 1.152 1.16 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.7
			0.03 0.007 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.04	4.13 1.62 1.04 1.16 0.74 0.74 0.056 0.089 0.89
			0.03 0.07 0.06 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.04	4.13 1.52 1.104 1.104 0.74 0.75 0.75 0.75
			0.03 0.07 0.06 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03	1.52 1.52 1.04 0.74 0.75
			0.03 0.07 0.06 0.04 0.03 0.03 0.03 0.03 0.03 0.03	4.13 1.52 1.04 1.16 0.74 0.96
			0.03 0.07 0.06 0.04 0.03 0.03 0.03 0.03	4.13 1.52 1.04 1.16 0.74
044 607 0.22 0.47 7.57 024 0.67 8.26 0.31 0.60 82.26 0.76 0.60 22.27 0.80 1.05 24.71 0.80 1.05 24.71 0.85 0.165 10.8 0.33 0.165 10.9 24.71 0.165 10.9 0.85 0.165 10.9 0.33 0.17 14.3 0.43 0.185 10.9 0.20 0.47 6.29 0.23 0.47 6.29 0.21 0.48 5.92 0.21 0.41 5.92 0.21 0.42 6.56 0.22 1.13 12.7 6.51 1.12 22.39 0.43 0.56 9.3 0.36 1.12 22.39 0.72 0.56 9.3 0.37 0.55 9.03 0.37 <td></td> <td></td> <td>0.03 0.07 0.06 0.03 0.03</td> <td>4.13 1.52 1.16</td>			0.03 0.07 0.06 0.03 0.03	4.13 1.52 1.16
0.41 6.07 0.22 0.47 7.57 0.24 0.65 8.25 0.23 0.65 8.23 0.31 0.65 8.23 0.31 0.66 7.73 9.64 0.31 0.67 8.23 0.80 0.33 1.05 22.26 0.33 0.86 1.05 24.71 0.85 0.33 0.46 7.96 0.26 0.33 0.46 7.96 0.26 0.23 0.47 6.29 0.20 0.21 0.47 6.29 0.21 0.21 0.47 6.59 0.21 0.21 0.47 6.54 0.22 0.21 0.47 6.41 0.21 0.21 0.48 11.64 0.22 0.23 1.13 12.78 0.43 0.43 1.11 22.39 0.43 0.92 0.12 0.30 0.46 0.30			0.03 0.07 0.06 0.04 0.03	1.04
			0.03 0.06 0.04	4.13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.03	4.10
044 607 0.22 0.47 7.57 024 0.67 8.26 0.31 0.66 8.26 0.31 0.69 82.26 0.76 1.05 22.271 0.80 1.06 24.71 0.80 1.05 24.71 0.85 0.68 10.34 0.86 1.06 24.71 0.43 0.55 10.32 0.34 0.47 10.34 0.43 0.47 6.39 0.20 0.47 6.39 0.20 0.47 5.92 0.21 0.47 5.92 0.21 0.48 5.92 0.21 0.47 6.56 0.22 0.56 6.56 0.22 0.56 11.64 0.23 1.03 12.7 0.43 0.58 0.28 0.24 0.59 0.22 0.21 0.56 6.56 0.22 <td></td> <td></td> <td>0.03</td> <td>2 4 2</td>			0.03	2 4 2
0.41 6.07 0.22 0.42 7.57 0.24 0.647 8.25 0.23 0.655 8.25 0.23 0.65 8.25 0.23 0.65 8.25 0.23 0.65 8.25 0.31 0.31 9.64 0.31 1.05 24.71 0.36 0.36 24.71 0.36 0.36 24.71 0.36 0.35 10.08 0.33 0.46 7.46 0.38 0.47 6.29 0.20 0.47 5.92 0.21 0.47 5.92 0.21 0.47 5.92 0.21 0.47 5.92 0.21 0.47 6.41 0.22 0.56 11.26 0.28 1.13 12.78 0.43			0.03	3.56
0.44 6.07 0.22 0.45 7.57 0.24 0.65 8.26 0.23 0.65 8.26 0.31 0.73 9.64 0.31 0.65 8.26 0.33 0.66 8.26 0.33 0.73 9.64 0.31 1.33 28.28 0.78 1.43 28.24 0.80 1.63 24.71 0.86 0.77 14.3 0.48 0.77 14.3 0.48 0.46 7.66 0.22 0.47 6.29 0.23 0.47 5.92 0.21 0.51 7.20 0.22 0.56 6.59 0.21 0.58 6.59 0.21 0.58 6.59 0.21 0.58 6.59 0.22 0.56 11.54 0.38				
0.41 6.07 0.22 0.42 0.43 7.57 0.24 0.45 3.25 0.23 0.24 0.65 8.26 0.23 0.31 1.13 0.66 23.26 0.78 0.31 1.13 1.33 24.71 0.86 0.86 0.78 0.44 0.70 24.74 0.86 0.33 0.43 0.43 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.26 0.25 0.25 0.25 0.25 0.21			0.04	1,44
0.44 6.07 0.22 0.47 7.57 0.24 0.647 7.57 0.24 0.703 8.26 0.31 0.703 8.26 0.33 0.904 22.29 0.31 0.905 22.29 0.31 1.905 24.71 0.80 1.905 26.44 0.85 0.951 7.96 0.23 0.51 7.96 0.26 0.51 7.20 0.23 0.47 6.29 0.21 0.47 6.41 0.21			0.03	0.90
041 607 0.22 0.47 7.57 0.24 0.66 8.28 0.31 0.51 9.64 0.31 0.52 8.28 0.31 1.05 24.71 0.86 1.05 26.44 0.36 1.05 26.43 0.36 0.17 14.34 0.86 0.05 10.08 0.33 0.46 7.86 0.28 0.47 6.29 0.20 0.43 7.86 0.28 0.43 5.92 0.21			0.03	0.68
0.44 6.07 0.22 0.47 7.57 0.24 0.65 8.26 0.23 0.65 8.26 0.31 0.65 8.26 0.31 0.73 9.64 0.76 1.33 22.28 0.78 1.63 24.71 0.86 1.66 28.44 0.86 1.67 28.44 0.86 1.68 27.77 14.3 0.56 7.66 0.25 0.51 7.20 0.23				0.65
0.41 6.07 0.22 0.47 7.57 024 0.67 3.26 0.28 0.67 9.24 0.31 0.67 23.28 0.78 1.33 24.71 0.86 1.06 28.44 0.86 0.77 14.3 0.48 0.46 7.66 0.28			0.03	0.80
0.41 6.07 0.22 0.47 7.57 0.24 0.67 8.26 0.31 0.50 8.26 0.31 1.05 23.28 0.70 1.05 24.71 0.80 0.56 1.03 0.86 0.56 1.03 0.86 0.73 26.44 0.86 0.95 1.03 0.80 0.95 1.03 0.03 0.96 0.03 0.33				86'0
0.41 6.07 0.22 0.47 7.57 0.24 0.67 9.24 0.24 0.67 8.26 0.31 0.69 8.26 0.78 0.80 82.26 0.78 1.03 24.71 0.80 1.06 26.4 0.34 0.65 1.05 26.4 0.65 1.03 0.40 0.65 10.08 0.33			0.04	
0.41 6.07 0.22 0.44 7.57 0.24 0.65 8.26 0.24 0.67 9.64 0.31 0.80 23.28 0.78 1.05 26.44 0.86 1.05 26.44 0.86 0.67 26.44 0.86				1.41
0.41 6.07 0.22 0.47 7.57 0.24 0.66 8.26 0.28 0.75 0.24 0.24 0.65 8.26 0.28 0.69 23.26 0.31 1.33 24.71 0.80 1.06 26.44 0.86		10	0.04	1.62
0.41 6.07 0.22 0.47 7.57 024 0.47 7.57 024 0.68 8.26 0.31 0.69 23.26 0.76 1.33 24.71 0.80			0.04	3.46
0.41 6.07 0.22 0.47 7.57 0.24 0.055 8.26 0.24 0.073 9.64 0.31 0.073 9.64 0.31 0.080 23.28 0.76			0.06	
0.41 6.07 0.22 0.22 0.47 7.57 0.24 0.24 0.65 3.26 0.28 0.28 0.73 364 0.31 0.11			0.05	0.05 2.19 0.07
0.41 6.07 0.22 0.47 7.57 0.24 0.65 8.26 0.28			0.04	0.04 11.79 0.06
0.47 6.07 0.22 0.47 7.57 024				1,18
0.41 6.07 0.22		12	:003	1.07
				0.98
0.40 0.7/ 0.7/		12		0.00
			1000 (adding and a	
low Average Daily How Monthly How Average Daily How (MC1) (mod) (MC1)	MON			SelaAN Mol- Kutuom
	7 - 1			

2008	2007	2006	2005	Winter Averages ⁽¹⁾ Mol	Note: 1. Sun	2008		2006	2005	Summer Averages ⁽¹⁾ Moi		December	November	October	September	August	Vinr	June	Mav	April	February	January	ages		2008	2007	2006	2005	
12.228	13.712	14.570	11.969	Rehobo Monthly Flow J (MG)	mmer is defined as	27.961	29.042	33.369	33.695	Monthly Flow // (MG)	Rehoboth Beach	14.77	14.71	16.76	22.13	32.28	32.90	27.87	19.33	16.36	12.11	13.38	Monthly Flow / (MG)	Rehobol	17.89	18.35	21.75	20.95	
0.404	0.455	0.493	0.406	Rehoboth Beach Flow Average Dally Flow (mgd)	Summer is defined as June, July, August	0.910	0.946	1.089	1.097	Average Daily Flow (mgd)	h Beach	0.48	0.49	0.54	0.74	1.04	1.06	0.93	082	0.55	0.43	0.43	Average Daily Flow (mgd)	Rehoboth Beach	0.59	0.60	0.71	0.69	(mgd) [
5.660	6.582	6.558	6.420	Dewey Beach Monthly Flow Averag (MG) (22.609	21.596	21.817	24.814	Monthly Flow A (MG)	Dewey Beach	6.51	7.23	9.30	13.59	24.00	26.33	17.81	11.35	7.63	5./1 £ 73	6.76	Flow	Dewey Beach	11.60	11.67	11.78	12.59	(MG) [
0.186	0.219	0.222	0.218	e Daily Flow mgd)		0.736	0.703	0.708	0.809	Average Daily Flow (mgd)	Beach	0.21	0.24	0.30	0.45	0.77	0.85	0.59	75.0	0.25	0.20	0.22	Daily Flow ngd)	3each	0.38	0.38	0.39	0.41	(mgd) [
1.086	1.019	0.926	0.989	Hentopen Monthly Flow (MG)		1.891	1.584	1.646	1.494	Monthly Flow (MG)	Henlopen Acres	1.17	1.11	1.14	1.20	1.62	1.96	1.38	1.26	1.02	0.94	1.12	Monthly Flow , (MG) ,	Henlopen Acres	1.40	1.23	1.12	1.21	(MG)
0.036	0.034	0.031	0.033	Acres Average Daily Flow (mgd)		0.062	0.052	0.053	0.049	le Daily (mgd)	Acres	0.04	0.04	0.04	0.04	0.05	0.06	0.05	0.04	0.03	0.03	0.04	e Daily (mgd)	Acres	0.05	0.04			Flow (mgd)
0.802	0.815	0.725	0.928	Nort Monthly Flow (MG)		3.163	2.810	3.269	3.101	Monthly Flow / (MG)	Nort	1.07	1.15	1.07	1.38	3.60	3.50	2.16	1.62	1.04	0.80	0.82		North	1.59	1.51	1.56	1.69	(MG)
0.026	0.027	0.024	0.032	North Shores ow Average Daily Flow (mgd)		0.103	0.091	0.106	0.101	Daily Flow gd)	North Shores	0.03	0.04	0.03	0.05	0.12	0.11	0.07	0.05	0.03	0.03	0.03	low Average Daily Flow (mgd)	North Shores	0.05	0.05	0.05	0.06	(mgd)
19.775	22.127	22.780	20.306	Total Rehob Monthly Flow (MG)		55.624	55.031	60.102	63.104	Monthly Flow (MG)	Total Rehob	23.52	24.20	28.27	38.31	61.49	64.69	49.21	33.56	26.05	07 00	22.08	Monthly Flow (MG)	Total Rehob	32.49	32.75	36.22	36.45	(MG)
0.653	0.735	0.771	0.689	Total Rehoboth Beach Service Area (y Flew Average Daily Flow (mgd) (G)		1.811	1.792	1.957	2.055	Average Daily Flow (mgd)	Total Rehoboth Beach Service Area	0.76	0.81	0.91	1.28	1.98	2.09	1.64	1.08	0.87	0.09	0.71	Average Daily Flow (mgd)	Total Rehoboth Beach Service Area	1.07	1.08	1.19	1.20	Include State Street Second

Appendix A: Table A-1 Rehoboth Beach Sewage Treatment Plant Flow Data 2005-2008

Appendix A: Table A-2: Rehoboth Beach Service Area Growth Projections

	Rehoboth Beach Service Area		
Stearns & Wheler LLC	Service Area Growth Projections	July-09	40284
Environmental	Satist	Cang.	Jab Ha
Engineers and Scientists		SAF	TAY
		Cone Sy	10 percencia
Assumptions	Notes:		
Annual EDU Growth (%) GDP/ EDU	0.36% Based on historic	0.36% Based on historical data provided by SCED 225	
Baseline Flow (mgd)	2.3 Based on averag	2.3 Based on average ADF from max month (July 2005)	
Baseline EDUs	102222		

Model Model <th< th=""><th></th><th></th><th></th><th></th><th>208 224</th><th>e Summer gpd/ EDU n Summer gpd/ EDU</th><th>Average Maximum</th><th></th><th></th><th></th><th>276 314</th><th>Average Summer gpd/ EDU Maximum Summer gpd/ EDU</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>					208 224	e Summer gpd/ EDU n Summer gpd/ EDU	Average Maximum				276 314	Average Summer gpd/ EDU Maximum Summer gpd/ EDU						
State State <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Net EDUs Gainec</th><th></th><th></th><th></th><th>6</th><th>Net EDUs Gained</th><th></th><th></th><th></th></th<>										Net EDUs Gainec				6	Net EDUs Gained			
Maximum Non-spectral symmetry Symmetry Symmetry Symmetry Symmetry Symmetr				F						3645					207	2009		
No. Control Co	225	0.91	4046.6	t	202		0.1	9639	18	3630	298	0.052	207	0	207	2008		
Market Biological Strategy and Str	225	0.95	4205.3				0	3622.5	15	3616	250	0.052	206	2	205	2007		
State State <th< td=""><td>225</td><td>1.09</td><td>4638.3</td><td>Γ</td><td></td><td>71</td><td>0.</td><td>3606</td><td>13</td><td>3597</td><td>262</td><td>0.053</td><td>204</td><td>2</td><td>203</td><td>2005</td><td></td><td></td></th<>	225	1.09	4638.3	Γ		71	0.	3606	13	3597	262	0.053	204	2	203	2005		
Market Register Market Register Re	225	1.10	4873.7				0,1	3603	-12	3609	239	0.049	204	<i>k</i> i	205	2005		
Control Control <t< td=""><td>225</td><td>1.02</td><td>4512.5</td><td></td><td></td><td></td><td></td><td>3605</td><td>6</td><td>3603</td><td>314</td><td>0.064</td><td>205</td><td>0</td><td>205</td><td>2004</td><td></td><td></td></t<>	225	1.02	4512.5					3605	6	3603	314	0.064	205	0	205	2004		
Medication of the second s	225	1.17	5208.2	Γ		77	0	3593.5	19	3594	292	0.059	203.5	63	202	2003		
	Bitumer op # EDS	Rehobeth Beach (solimated) Summer Avarage Daty From (mod	may EDU	2	niergna/ECJ	Daily Flow (mgd)	10	003yetuan 50	EDUS Gane	81	inmer opd/EOU	ne. Ave age Daly Flee (1905)	Revelee Aures SummerEDU 3 Sum	EDUS Garled	the second second		hor .	Ye

Rehoboth Beach Service Area Annual Growth Calculation

37	EDUs Gained by RBRWF per Year (Proportional)
38.15%	Percent Contribution of HA & DB to RBRWF (%)
413.71	Total RBWWTP Average Annual Flows (MG/ yr)
157.83	HA & DB Average Annual Flows (MC/ yr)
14	EDUs Gained/ Year
69	Total EDUs Gained 2003-2008
2	EDUs Gained From DB
5	EDUs Gained from HA
Seach Service Arse	Growth Determination for Rehoboth Be-

Rehoboth Beach Service Area Projected Growth

ntec ADE (hupo)	1.91	2.30 1.91 0.72	Current
Inter ADE Impol	The state of the state of the state	und the state of the set of the s	いたのでいたのであるのであるのであるのであるのであるのであるのであるのであるのであるのである
	アーチンであるところに、「このである」		
			Rehoboth Beach STP Projected Growth Summary
2.68	43	11,896	2050
2.67	43	11,853	2049
2.66	11,810 43	11,810	2048
2,65	43	11,767	2047
2.64	42	11,725	2045
2.63	ħ	11,683	2045
2.62	42	11,641	2044
2.61	42	11,589	2043
2.60	42	11,557	2042
2.59	42	11,515	2041
2.58	42	11,473	2040
2.57	41	11,432	2039
2.66	41	11,391	2038
2.05	4	11,350	2037
2.54	4	11,309	3005
2.54	4	11,268	2036
2.52	41	11,227	2034
2,62	40	11,187	2033
20	40	11,147	2042
2,50	40	11,10/	2081
2.48	40	11,007	2000
1.40	40	120/11	8202
0.11	+0	100,000	10203
0 17		10 097	5000
2.46	40	10.947	2027
2.45	39	10,908	2026
2.46	98	10,869	2025
2.44	39	10,830	2024
2.43	39	10,791	2023
2.42	39	10,752	2022
2.41	39	10,713	2021
2.40	39	10,674	2020
2.39	38	10,636	2019
2.38	88	10,598	2018
2.38	23	10,560	2017
2.37	8	10,522	2016
2.36	38	10,484	2015
2.35	38	10,446	2014
2.34	38	10,408	2013
2.33	38	10,370	2012
2,32	37	10,333	2011
2.32	37	10,295	2010
2.31	37	10,259	2009
2.30	37	10,222	2003
Contraction of the second of the second second	and the second sec		

Rehob Current Year 2030

2.49

Summer ADF Inte 2.27

And the second state of the second second

85 35 13

0.93

Appendix A: Table A-3: Rehoboth Beach Sewage Treatment Plant Performance Data 2005-2008

2007	2006	2005	Yearly Averages			2005-2008 Average	Dec-2008	Nov-2008	Oct-2008	Sep-2008	Aug-2008	Jul-2008	Jun-2008	May-2008	Apr-2008	Mar-2008	Feb-2008	Jan-2008	Dec-2007	Nov-2007	Oct-2007	Sep-2007	Aug-2007	Jui-2007	Jun-2007	May-2007	Apr-2007	Mar-2007	Feb-2007	Jan-2007	NOX-2006	Oct-2006	Sep-2006	Aug-2006	Jul-2006	Jun-2006	May-2006	Anr-2006	Mar-2006	Jan-2006	Dec-2005	Nov-2005	Oct-2005	Sep-2005	Aug-2005	Jul-2005	May-ZUUS	Apr-2005	Mar-2005	Feb-2005	Jan-2005		Date	
1.6	1.4	1.7	Preside Concentration (mg/L)	8	-	1.7	3.0	30	2.5	2.0	3.5	1.0	1.0	2.0	2.0	1.0	2.0	2.0	1.0	2.0	0.2	2.0	20	1.0	1,0	5,0	0,1	2.0	1.0	20	20	1.0	1.0	1.0	1.0	2.5	3.0	1.0	3 2	10	2010/02/01	3.0	2.0	3:0	2:0	202	10	1.0	20	20	20	Average		Concentratio
4.1	31	6.0	Max Cencerration (mgRJ)	logical Oxygen		4.3	6.0	30	3.0	4.0	8.3	4.0	3.0	4.0	5.0	3.0	3.0	4.0	2.0	4.0	1.0	4.0	4.0	2.0	2.0	12.0	1.0	9.0	4.0	40	20	2.0	5.0	3.0	3.0	3.0	4.0	20	300	2.0	6.0	6.0	4.0	14.0	7.0	40	000	40	4.0	4.0	50	Maximum		90 (mg/L)
15	14	77	Average Dally Loading (bs/cay)	Demand (BOD		16	21	10	16	19	57	16	13	18	12	6	1	1	Cn .	12	1	20	32	16	13	43	1	12	5	ដ	: : •	9	12	17	18	ន	26	7	"	» ij	2012	20	18	8	34	6	2	ø	6	12	15	Daily	Average	Loa
	434	520	Average Monthly Loading (Ibs) month	6		489	S.	547	507	562	1,754	508	363	572	371	177	329	330	165	371	44	019	982	494	392	1,338	22	386	153	374	147	284	355	525	562	1.043	811	210	197	410	385	694	509	1,012	1:067	595	7200	250	405	324	364	(bs/month)	Monthly	ding
2	2.7	3.4	Averaçe Concentration (mart)			3.3	5.0	4.0	3.0	2.5	3.0	3.0	1.0	2.0	3.0	2.0	5.0	5.0	7.0	4.0	3.0	4.0	30	2.0	4.0	5.0	4.0	3,0	3.0	3.0	3 0.0	40	3,0	3.0	3.0	2.0	3.0	3.0	10	30	30	10	3.0	40	4.0	30	40	7.0	4.0	40	30	Average		Conceptra
10.0	10.9	10.3	Max Duncentration (mg/L)	Total Susper		11.2	20.0	11.0	9.0	15.5	9.0	10.0	6.0	9.0	10.0	7.0	12.0	16.0	15.0	10.0	17.0	12.0	10.0	50	17.0	15.0	19.0	10.0	5.0	11.0	10.0	11.0	7.0	13.0	8.0	7,0	9.0	21.0	50	130	140	50	11.0	9.0	140	14:0	n a	14:0	10:0	7.0	7.0	Maximum		tion (mg/L)
3	27	34	n - Average Daily Logiding (balday)	ded Solids (TS)		30	35	24	20	23	48	40	13	18	19	11	28	27	37	25	21	41	48	32	52	43	30	19	16	18	14	2 5	: 8	51	54	28	26	21	» ;	0 <u>7</u>	50 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	7	25	45	69	58	4.7	58	26	23	17 17	(lbsiday)	Averane	1. Lo
3	830	1041	 Avcrage Month Scotling (bis/mon 			911	1,070	730	609	702	1,503	1,623	383	572	556	355	824	826	1.153	743	664	1,221	1.474	786	1,567	1,338	893	578	459	562	497	ach't	1,064	1,576	1,685	834	B11	ß	187	345	1000	198	764	1,349	2 135	1_785	1360	1,748	811	647	8	(its/month)	Monthly	ading
	2.4	2.9	Min Carperter			2.4	21	1.7	4.7	0.0	2.2	0.7	21	1.5	8.0	1.6	4.4	22	3.7	60.	- 1.1	1.2	0.7	2.2	1,5	1,6	11	2.3	8.8	4.1	50		2.0	1.5	2.7	2.5	1.3	1.9	0.8	1.0	- 1.8 4 -	3.4	2,1	2.8	23	04	0.0	3 A	0,8	-6,0-	2.9	Minimum		
	4.4	6.0	fore trade			6.1	8.3	10.4	14.0	7.3	4.5	2.5	4.5	4.3	3.0	5,0	9.3	8.3	8.8	67	3.4	2.4	3.9	0 (J) A	33	6.9	4.2	6.3	10.7	10.3	86	0.0	4.0	2.5	3.1	3.8	2.8	4.6	4.8	85	on the second second	8.6	52	4.2	4.7	4,1	5	6 4	11,7	9.5	5.5	Average		concentration (r
	7.8	12.9	n Mexil oncentra Img/La	Total Nitroge		11,3	12.9	19.7	32.6	22.2	8.9	4.0	10.2	8.1	7.7	7.6	15.6	16.4	12.1	14.2	54	3.6	11.8	7.2	6.3	21.2	6.8	6.6	12.9	15.7	15.0	0.0	6.0	3,7	3.8	5.5	7,0	9.3	8.6	11.1	14.0	15,6	127	6.7	15.0	9.6	88	200	518	152	12.1	Maximum		ng/L)
5	4	8	ion Average Dally ceding (boday)	n (TN)		51	57	63	92	8	73	41	57	40	19	29	8	44	47	41	- 24	24	62	54	43	60	31	39	58	62	67	20	2	42	56	53	24	32	28	52	20	en .	43	47	18	6 2	92	33	77	55	44	(ibs/day)		
	1326	1832	kver-			1,540	1,777	1,897	2,841	2,051	2,255	1,269	1,724	1,231	556	887	1,532	1,371	1 449	1 244	20/	/33	ale't	1,6/8	PRZ'I	1,846	937	1,215	1,637	1,928	2.090	1,000	1,410	1,313	1,741	1,585	756	968	898	1.467	1 700	1,909	1,324	1,417	2,508	2.440	2341	606 566	2.372	1,537	1,379	(bs/month)		pading
	0.1	0.2	10 00			_		_							-	-									271 Sept. Store 1		100000 00000														A CONTRACT OF	1					1342 (R.).				AND NO DEC	(i) (i)		
	0.4	0.5	Calibertal Calibertal			0.4	0.2	0.2	0.6	0.8	0,8	0.5	0.7	0.2	2.0	0.2	1.0	0.2	F.0.7	20	02	c,u	0.0	0.4	0.4	0.2	0.4	9.0	9.0	0.4	0,4	0.0	0.7	0.3	0.4	0.9	0.2	0.2	0.2	0.2	0.0	ch Ch	0.6	0.5	0.7	0,5	6.9	0.4	0.2	0.2	. 6.0	an weede		Concentratio
		1.0	Un Max C			0.7	0.3	0.3	0.9	1	1.7	0.8	12	0.6	0.3	0.3		0.4		0.0	0.0	1.1		4 0 7	0.0	0.3	1.1		0.8	0.6	0.7	0.4	0.4	0.0	6.0	1.3	0.4	0.4	0.5	0.4	0.4		4.	17	13	80	14	6 P	0.3	0,3	6.0	e mazanuusi	- 2	n (mgil)
		. 0	I) epading (rosoby)	horus (TP)		4	-1		4	7	13			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,					The second s						r 2	3	4	3	2	3	2	2 0	• •	7	13		-	-		- The section of the second of	•	a 0	6			14	<u>ہ</u>			2	(Ins/day)		Ľ.
110	/11	192	Averso			127	43	36	122	225	401	254	007	5/	10	8	10	40	0	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COI	450	205	107	94	89	116	93	75	85	48	53	BNC	225	375	54	42	37	35	41	10	8	691	374	298	405	30	41	32	8	y) (lbs/month)	24	Loading

Notes: 1. Su 2. Wi	Average	2008	2007	2006	2005	Year)	2008	2007	2006	
inter is defined as I	1.50	1.90	1.36	1.42	1.34	nne weige Of gruft	2.1	1.6	1,4	
 Summer is defined as June, July, August. Winter is defined as December, January, February 	1.87	3.00	1.67	1.72	1.70	Witter Average BGD: (mitte) ^m	4.2	41	3.1	0.0
February	2.87	2.45	2.93	2.72	3.34	Summer Average	18	15	14	
	3.70	5.00	5.67	2.61	2.70	Anner Average (SS (mg/L)	503	444	434	010
	3.76	3.77	3.65	3.08	4.62	Summer Average TA (mg) (*	3.0	3.6	2.7	
	9.15	8.30	8.80	10.22	9.27	Vinier Average The	11.2	12.2	10.9	
	0.58	0.68	0.47	0.50	0.66	Samman Avenago TP (mg/	26	32	27	
	0.24	0.20	0.13	0.46	0.17	Miniter Average TP	715	970	830	
	_									ĺ

			_	
18	15	74	17	Loading (Ibs/cay)
503	444	434	520	Loading (bs/ morth)
3.0	3.6	2.7	3.4	(TJCW) Internation
11.2	12.2	10.9	10.3	ing/U
26	32	27	34	Loading (Balday)
715	970	830	1041	Looping (be/ month)
2.0	2.4	2.4	2.9	(mg/L)
6.0	5.1	4.4	6.0	(00/L)
13.9	10.7	7.8	12.9	Ingita
53	46	44	8	.ceding (bs/day)
1468	1386	1326	1832	Loading (las/month)
0.1	0.1	0.1	0.2	(ngn)
0.5	0.4	0.4	0.5	(1)((cm)) (cm)(cm)
0.7	0.7	0.6	1.0	(g0w)
4	4	4	0	(fore of bape ca
124	110	701	153	(upter induced)

- Whitman, Requardt and Associates, LLP

APPENDIX B

Wolfe Neck Regional Wastewater Facility Flow, Performance Data and Future Flows

N:\13947-000\Engineering\Reports\Final\Appendice Pages.doc

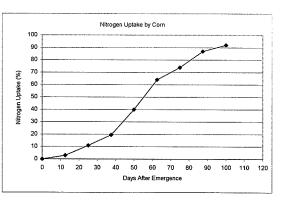
Summer Influent Characteristics 2005 2006 2007 2007 2008 Average Ncie	Winter full-and Characteristics (Van 2006 2000 2000 2000 2000 Average Note:	Vearly Averages 2006 2007 2008 2008	Wolfe Neck Regional Date
es Johnsent Average Dally Flax (mg0) 177 177 178 176 175 Summer defined as June, July, Avgust	- - Induint Murrup E. Bally Flow(Inpo) - 125 - 135 - 130 - 1	unturn Durgen Disk Forstingen 143 147 146 1.46	Notice Neck Regional Wastewater Facility Influent Wastewater Characteristics Dai Entrans/haracobar facility Consentation (multiple) Consentation (multiple) Jan 2005 1.27 305 305 Mar 2006 1.42 305 305 Mar 2007 1.43 305 305
Barrout at Day gen Da Concentration (mpL) 201 201 201 201 201 201 201 201	Eleitosatei Oxogen Din Scansentrateir (minus) 362 208 208 208	Concentration (mg/u)	water Characteristics
Mana (POD)) 10-00-100 (1994) 10-00-100 (T Loading (Bardey) (C) 4 (1997) 4 (1997) 2 (1997) 2 (1997) 2 (1997) 2 (1997) 2 (1997) 2 (1997)	numeri(BOBA)) isolation in a state and a s	Laverbood (1990)
- Trial Surparties Suita (TS) 	Conserving and a supervision of the supervision of	Total Suspended Solids (1989) 	T-for a supported Select (CSS) reconcertation recells (Select (CSS)) (1000) (1000) (1000) (1000) (1000) (10
(Issued a)	Installing Construction (reg/l) 1,652 1,652 1,753 55 1,753 55 1,753 55 1,755 55	10541by1 = 2 10541by1 = 2 2,022 1,415 1,415 1,164 2,164 2,02 2,164 2,02 2,	Line Concentration (mpl44) 1.104 1.104 1.104 .104
ovjen (TKN) - Loading (Ibs(day)) - 833 - 833 - 763	Prineti (IVA) Leoning (Ibsreav) 645 621	Loading (bs/day)	(64) (1000) (64) (
Organic Maregani (Organ) Connemnation (1990) 91 19 25 25 39	Currenting of the state of the	Concernation (Wirden (Ord W)	Concentration Concentration Concentration Concentration <t< td=""></t<>
Antropic Antropic Margane actapy - </td <td>Concentration</td> <td>Source of the second second</td> <td>8 (8 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2</td>	Concentration	Source of the second	8 (8 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2
(NH-N) Loading (byday) 	Ammodul (PPE-N) Lawfing (DPE-N) (m)(D-1) - - 33 - - 33 - - 33 - - 33 - - 33 - - 33 - - 33 - - 33 - -	(KH_A) - - - - - - - - - - - - - - - - - -	144 AV 144 AV

letined as June, July, August.

Appendix B: Table B-1: Wolfe Neck Regional Wastewater Facility Influent Data 2005 - 2008

Summer influent Christenteits yan 800 000 000 Average	Minite Neural Chapathoritics Neur 200 200 200 200 200 200 200 200 200 20	000 000 000 000 000 000 000 000	Wolfe Nuck Regional Wastwater Statuto Statuto Bayatto
100 100 100 100 100 100 100 100 100 100	типине Анмерд Силу Гени (1900) 6.6 1.0 1.1 1.1 1.1 1.1 1.1	102 112 112 112 112 112 112 112 112	Wolfe Nock Regional Wastewater Fallity Treated Effuent Wastewater Characteristics Brance wase Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space Space
Ar-ASSproy of Jerres 310 310 317 294	Aves.Spragel (even)	Aver380 yet (uurs) 230 314 307	Thanacteristics
0 1 1 1 1 1 1 1 1 1 1 1 1 1	Balady at Chiygad Laman Disapitalian (law/s) Lasad 6 12 12 13	Biological Conversion (1997)	
d (BCDA) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	4/BOCk1 0044 Supp (16543) Concentration (16543) Societation (1654 54 151 200		Alternative 112 1000000000000000000000000000000000000
252 164 164 164 165 175 166 176 166 176 166 176 166 176 166 176 166 176 166 176 17	rinka Sol ule (185) (1997) (19	ntes some (ress) (regular teorem) (regular teorem) (regul	State State
12 12 12 13 14 14 15 15 15 15 15 15 15 15 15 15	Cotal Mucropert (11%) 1000000000000000000000000000000000000	10 10 10 10 10 10 10 10 10 10	Staal Management (Ma) Australia Marken (Ma) Marken (Ma) Marken (Ma) </td
Fishel Kolani Ju g g g g g g g g g g g g g g g g g g g	2000 (2000) (200	10 10 10 10 10 10 10 10 10 10	Alter (Network)
49 10 10 10 10 10 10 10 10 10 10 10 10 10	spent ("KN) (Janony J (Knowny J)) (Knowny J (Knowny J)) (Knowny J) (Knowny	801 801	Sector (1) Sector (1) Sector (1) Sector (1) <t< td=""></t<>
dgest (Ord a)	5 3 2 Control (Dury v)	organic Streams (Org.4) organic Streams (Org.4) organic organic 2 4 4 4 4 4 4 4 4 4 4 4 4 4	R R
Conventional Advisoria		Annoonu Concentration Mage	Amanana Amananana Amananana Amananana Amananana Amananana Amananana Amanananana Amananananananana Amanananananananan Amananananan Amananananan Amanananan Amanananan Amanananan Amanananan Amanan Amanan Amananan Amanan Amananan Amanan Amananan Amanan Amananan Amanan Amanan Amananan Amanan Amanan Amananan Amananan Amanan Amanan Amananan Amananan Amananan Amanan Amanan Amanan Amananan Amananan Amananan Amananan Amananan Amananan Amananan Amananan Amananan Amananan Amananan Amananan Amananan Amananan Amanan Amananan A
4 Co	(541) 74 58 57	61 61	9 1 1 1 1 1 1 1 1 1 1 1 1 1
Internet (Index-A)	Normality Normality <t< td=""><td>101 6 191 11 11 11 11 11 11 11 11 11 11 11 11</td><td></td></t<>	101 6 191 11 11 11 11 11 11 11 11 11 11 11 11	
Concerning Provide the Provide	Part Construction of the sector of the secto	Tridat (Prime) 	Section 10 (1997) Section 10 (1
0 00 	0 12 12 12 12 12 12 12 12 12 12	195 195 195 195 195 195 195 195 195 195	All and a set of the s

Appendix B: Table B-2: Wolfe Necke Regional Wastewater Facility Performance Data 2005-2008


Stearns & Wheler, LLC	North C	oastal Pla	nning Ar	ea Prelin	inary Eng	gineering	Report					April 2009		4028
Environmental												Date		Job No
Engineers and Scientists		ve 1 Niti	ogen Bal	ance and	Percolate	Concent	ration Cal	culation				JVS		
·····	Subject											Comp. By		Check
Objective: To determine the total nitrogen concentration in the percolate schedule.	on a yearly ave	rage based	on a month	ly nitrogen	balance for	the entire	facility. Th	is assumes de	sign conditic	ons of permi	tted effluen	t application	rates and	a com
Design Criteria / Assumptions: According to the Mid-Atlantic Nutrient Management Handbu Therefore, corn is used in this sheet to calculate the nitrogen				nts are high	er than thos	e of grain o	com.							
Wetted Field Area (acres)	319													
Average Effluent Nitrogen Concentration (mg/L)	23													
Vitrogen from Rainfall and Fixation (lbs/ac/yr)		assumed r	er Table 7	3-2 in the	regulations									
Com Planting Date			vpical sche											
Nitrogen Uptake by Corn (lbs/ac/yr)	1-50	assumed t	preat solle	aure (Balli	water)									
in open optime by com (toardoyi)	150													
Aonthly Nitrogen Balance:														
arameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	Note
Days	31	28.25	31	30	31	30	31	31	30	31	30	31		1
Vetted Field Area (acres)	319	319	319	319	319	319	319	319	319	319	319	319		1
ffluent Rate (in/wk)	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41		1
pplication Rate (mgd)	1.75	1.75	1.75	1.75	1.75	1,75	1.75	1.75	1.75	1.75	1.75	1.75		1
ffluent Rate (in/mo)	6.3	5.7	6.3	6.1	6,3	6.1	6.3	6.3	6.1	6,3	6.1	6.3		1
Vastewater Volume Applied (Mgal/mo)	54	49	54	53	54	53	54	54	53	54	53	54	639.19	1
recipitation (in/mo)	4.7	4.4	5.6	4.5	5	5.1	6.3	8.2	5.2	5,4	4.6	5.2	64	1
otential Evapotranspiration, PET (in/mo)	0,1	0.1	0.7	1.8	3.3	4.8	5.5	4.9	3.6	1.9	0.9	0.2	28	2
Percolate (in/mo)	10.9	10,0	11.2	8.8	8.0	6.4	7.1	9.6	7.7	9.8	9.8	11.3	110	1
Percolate (Mgal/mo)	94	87	97	76	69	55	61	83	66	85	85	98	954	1
Percolate (mgd)	3.0	3.1	3.1	2.5	2.2	1.8	2.0	2.7	2.2	2.7	2.8	3.1	<u> </u>	1
Total Nitrogen Concentration in Effluent (mg/L)	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	 	1
stimated fraction of ammonia in effluent TN	0.3	0.5	0.4	0,4	0.4	0.4	0.3	0.3	0,4	0.1	0.2	0.4		13
mmonia Concentration in Effluent (mg/L)	7.8	10.5	9.2	8.8	8.4	9.7	7.7	7.4	8.5	1.7	3.7	9.8		1
otal Nitrogen Input from Effluent (lbs/ac/mo)	32.6	29.7	32.6	31.6	32.6	31.6	32.6	32.6	31.6	32.6	31.6	32,6	384.4	1
litrogen from Rainfall and Fixation (lbs/ac/mo)	0.4	0.4	0.4	0,4	0.4	0,4	0.4	0.4	0.4	0,4	0,4	0.4	5	1
mmonia Volatilization by Plant (lbs/ac/mo)	0.6	0.7	0.7	0.6	0,6	0.7	0.5	0.5	0.6	0,1	0,3	0.7	6	4
mmonia Input from Effluent (lbs/ac/mo)	11.0	13.5	13.1	12.1	11.8	13.3	10.9	10.5	11,6	2.4	5.1	13.9	129	1
enitrification by plant (lbs/ac/mo)	6.5	5.9	6.5	6.3	6.5	6.3	6.5	6.5	6.3	6.5	6.3	6.5	77	15
N after volat., denit., fixation. rain (lbs/ac/mo)	26.0	23.5	25.9	25.1	25.9	25.0	26.0	26,0	25.1	26,4	25.4	25.8	306	ſ
lant Uptake and Storage (lbs/ac/mo)	8	8	8	8	8	22,5	67.5	43.5	9	7.5	8	8	203	1
litrogen Leached by Percolate (lbs/ac/mo)	18.5	16.0	18.4	17.6	18.4	2.5	0.0	0.0	16.1	18.9	17.9	18.3	163	1
Percolate Nitrogen Concentration (mg/L)	7,5	7.1	7.3	8.9	10.2	1.7	0.0	0.0	9.3	8.5	8.1	7.2	6.3	

Summary:

Nitrogen Uptake Rate by Corn⁽⁶⁾:

Average Percolate Nitrogen Concentration (mg/L)	6.3
Max Month Percolate Nitrogen Concentration (mg/L)	10.2
Total Nitrogen in Percolate (lbs/vr)	50,300
Effluent Application Rate Yearly Average	1.41

Days .	After Eme	rgence	Nitro	gen Uptake (%	%)
	0			0	<u></u>
	12.5			3	
	25			11	
	37.5			19.5	
	50			40	
	62.5			64	
	75			74	
	87.5			87	
	100			92	
Jun 30	Jul	Aug	Sep	Oct	
	31	31	30	31	
30	61	92	122	153	
15%	60%	89%	95%	100%	
15%	45%	29%	6%	5%	

Nitrogen Uptake Rate by Other Crops: Small Grain Including Barley and Wheat (lbs/ac/yr) Therefore, Small Grain (Ibs/ac/mo)

Days Days in Growing Season at the end of each Month Total Nitrogen Uptake at the end of each Month Incremental Nitrogen Uptake for each Month

90 cover crop during non-corn growing season 8

Notes:

 Notes:

 1. 5 year precipitation per Table 702-3 in the Delaware Regulations Governing the Land Treatment of Wastes (1988)

 2. Table 702-2 in the Delaware Regulations Governing the Land Treatment of Wastes (1988)

 3. Effluent ammonia data were not submitted. This fraction is taken from the Piney Neck RWF data, where ammonia in the effluent was submitted.

 4. Assume 5 % of ammonia applied based on example in the Delaware Regulations Governing the Land Treatment of Wastes (1988)

 5. Assume 20 % of total N applied based on example in the Delaware Regulations Governing the Land Treatment of Wastes (1988).

 6. Based on the Chesapeake Bay Region Nutrient Management Training Manual - USEPA Chesapeake Bay Program.

Stearns & Wheler, LLC	Project	oastal Pla	inning Ar	ea Prelim	unary Eng	gineering	Report					April 2009		402		
Environmental														306 2		
Engineers and Scientists		ive 2 Niti	ogen Bal	ance and	Percolate	Concent	ration Cal	culation				JVS		TAY Checked By		
	Subject											Comp. By		Chee		
Dbjective: To determine the total nitrogen concentration in the percolate chedule.	on a yearly ave	rage based	on a month	ly nitrogen	balance for	the entire	facility. Th	is assumes de	sign conditio	ns of perm	itted effluen	at application	rates and a	a con		
esign Criteria / Assumptions: ccording to the Mid-Atlantic Nutrient Management Handbo Therefore, corn is used in this sheet to calculate the nitrogen				nts are high	er than thos	se of grain o	com.									
Vetted Field Area (acres)	319															
Average Effluent Nitrogen Concentration (mg/L)	9															
Nitrogen from Rainfall and Fixation (lbs/ac/yr)	5	assumed p	er Table 7	03-2 in the	regulations											
Corn Planting Date				dule (Sam												
vitrogen Uptake by Corn (lbs/ac/yr)	150															
And the Nillen on Delance																
Ionthly Nitrogen Balance: arameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	INot		
avs	31	28.25	31	30	31	30	31	31	30	31	30	31		110		
/etted Field Area (acres)	319	319	319	319	319	319	319	319	319	319	319	319				
ffluent Rate (in/wk)	1,74	1.74	1,74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74	1.74		4		
pplication Rate (mgd)	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15		1		
ffluent Rate (in/mo)	7.7	7.0	7.7	7.4	7.7	7.4	7.7	7.7	7,4	7.7	7.4	7.7		1		
/astewater Volume Applied (Mgal/mo)	67	61	67	65	67	65	67	67	65	67	65	67	785.29			
recipitation (in/mo)	4.7	4.4	5.6	4,5	5	5.1	6.3	8.2	5.2	5.4	4.6	5.2	64	Ι,		
otential Evapotranspiration, PET (in/mo)	0.1	0.1	0.7	1.8	3.3	4.8	5.5	4.9	3.6	1.9	4.0	0.2	28	1		
ercolate (in/mo)	12.3	11.3	12.6	10,1	9.4	7.7	8.5	11.0	9.0	11.9	11.1	12.7	127	1 ²		
ercolate (Mgal/mo)	12.5	98	12.0	88	81	67	74	95	9.0	97	97	12.7	1101	1		
Percolate (mga)	3,4	3.5	3.5	2.9	2,6	2,2	2.4	3.1	2.6	3.1	3.2	3.5	1101			
otal Nitrogen Concentration in Effluent (mg/L)	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9				
stimated fraction of amnonia in effluent TN	0.3	0.5	0.4	0.4	0.4	0.4	0.3	0.3	0.4	0.1	0.2	0.4		2		
mmonia Concentration in Effluent (mg/L)	3.0	4.1	3.6	3.4	3,2	3.8	3.0	2.9	3,3	0,6	1.4	3.8		ľ		
otal Nitrogen Input from Effluent (lbs/ac/mo)	15.5	14.1	15.5	15.0	15.5	15.0	15.5	15,5	15.0	15.5	1.4	15.5	182.7	1		
litrogen from Rainfall and Fixation (lbs/ac/mo)	0,4	0,4	0.4	0.4	0,4	0,4	0.4	0.4	0.4	0,4	0.4	0.4	102.7	1		
mmonia Volatilization by Plant (lbs/ac/mo)	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0,4	0.4	0.4	3	1		
mmonia Input from Effluent (Ibs/ac/mo)	5.2	6.4	6.2	5.7	5.6	6.3	5.2	5.0	5.5	1,1	2,4	6.6	61	ľ		
entrification by plant (lbs/ac/mo)	3.1	2.8	3.1	3.0	3.1	3,0	3.1	3.0	3.0	3,1	3.0	3.1	37			
	12.6	11.4	12.5	12,1	12.5	12.1	12.6	12,6	12.1	12.8	12.3	12.5	148	Ľ		
			8	8	8	22.5	67.5	43.5	9	7.5	8	8	203	1		
N after volat., denit., fixation, rain (lbs/ac/mo)	8	1 8					01.2	40.0		1 6.2	0	1 0	203			
TN after volat., denit., fixation, rain (lbs/ac/mo) Plant Uptake and Storage (lbs/ac/mo) Nitrogen Leached by Percolate (lbs/ac/mo)	8	8 3.9	5.0	4,6	5,0	0,0	0.0	0.0	3.1	5.3	4.8	5.0	42	1		

Average Percolate Nitrogen Concentration (mg/L)	1.4
Max Month Percolate Nitrogen Concentration (mg/L)	2.4
Total Nitrogen in Percolate (lbs/yr)	12,800
Effluent Application Rate Yearly Average	1.74

Nitrogen Uptake Rate by Corn ⁽⁶⁾ :	Days.	After Eme	rgence	Nitre	gen Uptake (%)]				N	itrogen	Lintak	e by Co						
through optime state by corn ?		0	***********		0	<u>ا</u> ا .	00			14	aogen	Орак	s by Co						÷
		12.5			3		100												
		25		·	11		90									-	<u></u>		-
		37.5			19.5		80								_/_				_
		50			40	_	70								/				
		62.5			64	(%)	10						~	/-					
		75			74		60						-/-						
		87.5			87	Uptake	50						/						_
		100			92	11 7	40						·						
	L			1		Nitroger	40					1							
						ž	30					/							
							20				_								_
	Jun	Jul	Aug	Sep	Oct	1	10			/	· ·								
Days	30	31	31	30	31		10	~											
Days in Growing Season at the end of each Month	30	61	92	122	153		0		1						···.	·····		·····	-
Total Nitrogen Uptake at the end of each Month	15%	60%	89%	95%	100%		0	10	20	30	40	50	60	70	80	90	100	110	120
Incremental Nitrogen Uptake for each Month	15%	45%	29%	6%	5%							Days A	fter Em	ergence					
Nitrogen Uptake Rate by Other Crops:										··· · · · · ·									
Small Grain Including Barley and Wheat (lbs/ac/yr)	90	cover crop	during nor	1-com grow	ing season														

eat (lbs/ac/yr) Therefore, Small Grain (lbs/ac/mo)

cover crop during non-corn growing season 8

 Notes:

 1. 5 year precipitation per Table 702-3 in the Delaware Regulations Governing the Land Treatment of Wastes (1988)

 2. Table 702-2 in the Delaware Regulations Governing the Land Treatment of Wastes (1988)

 3. Effluent ammonia data were not submitted. This fraction is taken from the Piney Neck RWF data, where ammonia in the effluent was submitted.

 4. Assume 5 % of ammonia applied based on example in the Delaware Regulations Governing the Land Treatment of Wastes (1988)

 5. Assume 20 % of total N applied based on example in the Delaware Regulations Governing the Land Treatment of Wastes (1988).

 6. Based on the Chesapeake Bay Region Nutrient Management Training Manual - USEPA Chesapeake Bay Program.

APPENDIX C

EDU Data and Projections

Appendix C: Table C-1: Sussex County North Coastal Planning Area EDU History 2003-2008

2009	EDUs	3,585	3,648	202	201	17,422	4,342	1,143	1,969	1,357	1,976	6,183	6,875	536	436	189	48	314	0	25,370	7,520	150	. 903	8,573	1,135	573	o	551	
%	Growth	0.53%	0.49%	0.0001	%00'D	1.76%	0.23%	0.32%	1.72%	1.09%	54.90%	0.05%	2.63%	1.57%	139.56%	3.85%	0.00%	58.05%	0.00%	5.52%	2.22%	0.00%	0.00%	1.94%	4.98%	%09 ^{.0+} .	0:00%	1.39%	
Annual	Growth	19	18		5	301	10	4	33	15	700	3	176	8	254	7	0	115	0	1,328	163	0	0	163	54	ę	0	8	
2008	EDUs	3,566	3,630	100	202	17,121	4,332	1,139	1,936	1,342	1,276	6,180	6,699	528	182	182	48	199	0	24,042	7,357	150	903	8,410	1,081	576	0	543	
%	Growth	0,44%	0.43%		0.97%	4.21%	-0.13%	0.35%	1.11%	2.85%	256.74%	0.72%	2.10%	4.52%	188.89%	1.68%	0.00%	9833.50%	0.00%	6.64%	4.65%	0.00%	44,58%	9.87%	4.44%	1.05%	0.00%	-8.63%	
Annual	Growth	16	16		2	692	φ	4	21	37	918	44	137	23	119	3	0	197	0	1,498	327	150	278	755.	46	9	0	-51	
2007	EDUs	3,550	3.615		205	16,429	4,338	1,135	1,914	1,305	358	6,136	6,561	505	63	179	48	2	0	22,544	7,030	0	624	7,654	1,035	570	0	595	
%	Growth	0.53%	0.49%		0.98%	4.91%	1.08%	-3.51%	2.40%	4.18%	61.82%	0.52%	%60:2	26.18%	1,61%	110.59%	33.33%	0:00%	0:00%	4.25%	6.64%	0.00%	0.00%	16.11%	14.97%	1.30%	0.00%	2.06%	
Annual	Growth	19	18		2	769	46	-41	45	52	137	32	434	105	1	94	12	2	0	919	438	0	624	1,062	135	7	0	12	4
2006	EDUs	3,531	3 597		203	15,660	4,291	1,177	1,869	1,253	221	6,104	6,127	400	62	85	36	0	0	21,625	6.592	0	0	6,592	006	563	0	583	200
%	Growth	-0.41%	-0.34%		-0.97%	4.07%	1 01%	3,44%	21.68%	9.40%	197.50%	2.80%	8.50%	14.28%	181.82%	0.00%	0:00%	0:00%	0.00%	7.59%	7.11%	0:00%	0.00%	7.11%	1.93%	-1.11%	0.00%	2 2804	2.64.2
Annual	Growth	-14	-1-		-2	612	43	39	333	108	147	166	480	50	40	85	36.	0	0	1,526	438	0	0	438	17	9-	C	10	2
2005	EDUS	3,546	3 600	2006	205	15,048	4,248	1,138	1,536	1,145	74	5,938	5,647	350	22	0	Ó V	0	0.0	20,099	6,155	0	0	6,155	883	569	c	540	970
%	Growth	0.27%	0.18%	2010	0.00%	7.01%	2.80%	4.22%	410.29%	12.01%	8.26%	5.59%	4.75%	8.02%	0:00%	0:00%	0.00%	0.00%	0:00%	11.80%	6,92%	0.00%	0.00%	6.92%	-0.90%	410.01%	0.00%	0.00.0	0,1070
Annual	Growth	10	4		0	986.	116	46	1,235	123	9	314	256	26	0	0	0	0	0	2.122	398	0	0	398	-8	458		>	4
2004	EDUs	3,536	3 6/13	0000	205	14,063	4.133	1.092	301	1.022	69	5.623	5.391	324	22	0	0	0	0	179.71	5 756	0	0	5.756	891	112		0	996
<u>%</u>	Growth	0.42%	0.502	0,000	1.48%	8.86%	3,10%	-1 70%	23.35%	12.52%	3.67%	5.39%	2.80%	9.09%	0.00%	0.00%	0.00%	0.00%	0.00%	4 29%	7 15%	0.00%	0.00%	7 15%	-3 99%	0.00%	0.000	0.00%	14.23%
Annual	Growth	15	ç	<u>n</u>	3	1,144	124	61-	57	114	2	288	147	27	C	0	G	. 0	5 0	740	384	0	C	384	-37	410	4	>	75
2003	EDUs	. 3521	2 604	9,304	202	12.918	4 008	1 110	244	606	99	5 336	5 244	797	8	0	c	, c	, c	17 237	F 379	- 0	c	5 377	800	0	>	Ð	524
District		DRWD		חפפמח	HASSD	WRE	RSSD	Nan	CNE	OVF	MVF	CSSSD	EISSD	USS IH	MCSSD	RVFSSD	SCESSO.	source of		S/DD/A/E	I NISCH	ANSSD	Casoo	In Rav	DECED	00010	ELOOU	GVSSD	BLSSD

TABLE C-2
EQUIVALENT DWELLING UNIT (EDU) PROJECTION TABLE
TREATMENT AND DISPOSAL

STUDY AREAS	2008 ESTIMATED EXISTING EDUS	2009	2010	2011	2012	2013	2014	2015	2020	2025	2030	2035	2045	BUILDOUT DESIGN (9.)
WEST REHOBOTH					1812HQN-6525	Agents Auto 1984				ALC: NAME OF GROOM				
Existing WRE of DBSSD (Phases I-IV)	17,121	17,635	18,148	18,662	19,176	19,689	20,203	29,716	23,285	25,853	28,421	30,989	36,125	36,929
Northern WR Expansion	126	-	-	-	~	-	-	-	-	-		-	-	1,823
Goslee Creek	1,319	-	-	-	-	-	-	-	-	100	600	1,100	2,100	9,062
Total Potential EDUs to WNRWF	18,566	17,635	18,148	18,662	19,176	19,689	20,203	20,716	23,285	25,953	29,021	32,089	38,225	47,814
Flow to WNRWF (MGD) - Ex. @ 125 gpd/EDU, Growth @ 125gpd/EDU (6.)	-	2.2	2.3	2.3	2.4	2.5	2.5	2.6	2.9	3.2	3.6	4.0	4.8	6.0
Flow to WNRWF (MGD) - Ex. @ 150 gpd/EDU, Growth @ 150gpd/EDU (7.)		2.6	2.7	2.8	2.9	3.0	3.0	3.1	3.5	3.9	4,4	4.8	5.7	7.2
Flow to WNRWF (MGD) - Ex. @ 150 gpd/EDU, Growth @ 225gpd/EDU (7.)		2.7	2.8	2.9	3.0	3.1	3.3	3.4	4.0	4.6	5.2	5.9	7.3	10.8
ANGOLA NECK STUDY AREA														
Angola Neck Sanitary Sewer District	1,366	150	150	1,571	1,612	1.653	1,694	1,735	1,940	2,145	2,350	2.554	2,646	2,646
Phase II Service Area Angola Neck Total EDUS	-	- 150	- 150	- 1,571	- 1,612	- 1,653	- 1,694	250 1,985	500 2,440	750 2,895	1,000	1,250 3,804	1,750 4,396	9,243 11,889
Estimated Average Daily Flow (MGD)		0.02	0.02	0.24	0.24	0.25	0.25	0.30	0.37	0.43	0.50	0.57	0.66	1.8
		l						1	l		1			
HERRING CREEK STUDY AREA	902	-	-	-	-	150	175	200	325	450	575	700	825	5,756
Estimated Average Daily Flow (MGD)	-	-	-	-	-	0.02	0.03	0.03	0.05	0.07	0.09	0.11	0.12	0.86
LONG NECK					and the second second								REPAILSHOW	
Existing Long Neck Sanitary Sewer District including Exp. Area 1	7,357	7,578	7,798	8,019	8,240	8,461	8,681	8,902	10.006	11,109	12,213	13,316	15,523	15,590
Estimated Average Daily Flow (MGD)	-	1.1	1.2	1.2	1.2	1.3	1.3	1.3	1.5	1.7	1.8	2.0	2.3	2.3
OAK ORCHARD										-				
Existing Oak Orchard Sanitary Sewer District	903	930	957	984	1.011	1,038	1,066	1,093	1,228	1 364	1 499	1,614	1,614	1,614
Oak Orchard Expansion 1 (8.)	790			861	885	909	932	956	1,074	1,193	1,311	1,430	1,548	3,789
Oak Orchard Expansion 2	545	-	-	-	-	-	-	165	247	329	410	492	574	3,524
Oak Orchard Total EDUs	2,238	930	957	1,845	1,896	1,947	1,998	2,214	2,549	2,885	3,221	3,536	3,736	8,927
Estimated Average Daily Flow (MGD)	-	0.14	0.14	0.28	0.28	0.29	0.30	0.33	0.38	0.43	0.48	0.53	0.56	1.34
Total Potential EDUs to IBRWF	11,863	8,658	8,906	11,435	11,748	12,210	12,548	13,300	15,319	17,339	19,358	21,356	24,480	42,162
Flow to IBRWF (MGD) - Ex. @ 125 gpd/EDU, Growth @ 125gpd/EDU (6.)	-	1.1	1.1	1.4	1.5	1.5	1.6	1.7	1.9	2.2	2.4	2.7	3.1	5.3
Flow to IBRWF (MGD) - Ex. @ 150 gpd/EDU, Growth @ 150gpd/EDU (7.)	-	1.3	1.3	1.7	1.8	1.8	1.9	2.0	2.3	2.6	2.9	3.2	3.7	6.3
Flow to IBRWF (MGD) - Ex. @ 150 gpd/EDU, Growth @ 225gpd/EDU (7.)	-	1.3	1,4	2.0	2.0	2.1	2.2	2.4	2.8	3.3	3.7	4.2	<i>4</i> .9	9.5
TOTAL EDUs (WNRWF and IBRWF);	30,429	26,292	27,054	30,097	30,923	31.900	32,751	34.017	38.604	43,291	48,379	53,446	62,706	89,976
Total Flow (MGD) - Ex. @ 125 gpd/EDU, Growth @ 125gpd/EDU (6.)	-	3.3	3.4	3.8	3.9	4.0	4.1	4.3	4.8	43,291 5.4	46,379 6.0	6.7	7.8	11.2
Total Flow (MGD) - Ex. @ 150 gpd/EDU, Growth @ 150gpd/EDU (7.)	-	3.9	4.1	4.5	4.6	4.8	4.9	5.1	5.8	6.5	7.3	8.0	9.4	13.5
Total Flow (MGD) - Ex. @ 150 gpd/EDU, Growth @ 225gpd/EDU (7.)	-	4.0	4.2	4.9	5.1	5.3	5.5	5.8	6.8	7.8	9.0	10.1	12.2	20.2

Constant Growth Rates for EDU projections are assumed as follows:
 WRE DSSD: 3% of Existing EDUs
 Goslee Creek: 100 EDUs connect in 2025, growth at 100 EDUs/year
 Cangola Neck Phase II Service Area: 250 EDUs connect in 2015, growth at 50 EDUs/year
 Cangola Neck Phase II Service Area: 250 EDUs connect in 2015, growth at 25 EDUs/year
 Cangola Neck Phase II Service Area: 250 EDUs connect in 2015, growth at 25 EDUs/year
 Cangola Neck Phase II Service Area: 250 EDUs connect in 2015, growth at 25 EDUs/year
 Cangola Neck Phase II Service Area: 250 EDUs connect in 2015, growth at 25 EDUs/year
 Cangola Neck Phase II Service Area: 250 EDUs connect in 2015, growth at 26 EDUs/year
 Cangola Neck Phase II Service Area: 250 EDUs
 Goslee Creek: 100 EDUs connect in 2011 with growth at 3% of initial connection per year
 Design estimates based on 20% Open Space and 90% Occupancy rate
 EDU estimates include a reduction for Area dare based on 4 EDUs per acre
 Buildout and Design EDUs for Oak Orchard Exp. Area do not include an estimated 2, 275 EDUS for the Mountaire Property in Expansion 2, which was determined not to require service.
 Buildout and Design Calculations for Angola Neck SSD include 215 EDUs for Southerm Parcels, even though service was not provided in the ANSSD Facilities Plan.
 Representative of an Average Daily Flow
 Area on turrently being served by the new OO Expansion Area #1 Sanitary Sever District.
 Projected flows based on all EDUs (existing and growth) to be applied at the Growth EDU rate.

APPENDIX D

Rehoboth to Wolfe Neck Conveyance Cost Estimates

TABLE D-1 Alternative 1 - RBSTP Raw WW to WNRWF FM Alignment Option #1 - Permanent Easement Installation Cost Estimate

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
RBSTP to WNRWF Force Main (1.)					
Mobilization (5%)	LS			\$165,000	
30" Force Main - County Roadway Installation 30" Force Main - Permanent Easement Installation	LF LF				Assumes No Road Restoration
Air Release Valves and MH (2.)	EA EA		6	\$42,000 \$90,000	
Isolation Valves Directional Drill Rehoboth Canal (3.)	EA			\$360,000	
SUBTOTAL				\$3,123,000	
10% Construction Contingency				\$312,300 \$3,435,300	
SUBTOTAL					
CONSTRUCTION TOTAL				\$3,435,300	
Project Costs		22%		\$755,766	
RBSTP to WNRWF Force Main PROJECT TOTAL			2000	\$4,191,100	
RBSTP to WNRWF PROJECT TOTAL				\$4,191,100	

 Image: A contract of the contra

TABLE D-2 Alternative 1 - RBSTP Raw WW to WNRWF FM Alignment Option #2 - Coastal Highway **Cost Estimate**

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
RBSTP to WNRWF Force Main (1.)					
Mobilization (5%)	LS	\$280,000	-	\$280,000	
30" Force Main - Major Roadway Installation (2.)	LF	\$225	14,500		
30" Force Main - County Roadway Installation	LF	\$175	6,500	\$1,137,500	
Air Release Valves and MH	EA	\$7,000	5	\$35,000	
Isolation Valves (3.)	EA	\$45,000	2	\$90,000	
Directional Drill Rehoboth Canal (4.)	EA	\$360,000	1	\$360,000	
SUBTOTAL				\$5,165,000	
10% Construction Contingency				\$774,750	
SUBTOTAL				\$5,939,750	
CONSTRUCTION TOTAL				\$5,939,750	
Project Costs		22%		\$1,306,745	
RBSTP to WNRWF Force Main PROJECT TOTAL				\$7,246,500	
RBSTP to WNRWF PROJECT TOTAL				\$7,246,500	

Notes:

Notes: (1.) 10.2 MGD sized for Ultimate Design (2.) Refers to portion installed along Coastal Highway (SR 1) (3.) Assumes 1 ARV per 3,000 feet of FM. (4.) Cost for directional drill based on similar projects in Sussex County, DE.

TABLE D-3 Alternative 2 - RBSTP Treated Effluent to WNRWF FM Alignment Option #1 - Permanent Easement Installation **Cost Estimate - DRAFT**

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
RBSTP to WNRWF Force Main (1.)					
Mobilization (5%)	LS	\$175,000	-	\$175,000	
30" Force Main - County Roadway Installation	LF			\$1,750,000	
30" Force Main - Permanent Easement Installation	LF	\$130	8,200	\$1,066,000	Assumes No Road Restoration
Air Release Valves and MH (2.)	EA	\$7,000	7	\$49,000	
Isolation Valves	EA	\$45,000	2	\$90,000	
Directional Drill Rehoboth Canal (3.)	EA	\$360,000	1	\$360,000	
SUBTOTAL				\$3,490,000	
10% Construction Contingency				\$349,000	
SUBTOTAL				\$3,839,000	
CONSTRUCTION TOTAL				\$3,839,000	
Project Costs		22%		\$844,580	
RBSTP to WNRWF Force Main PROJECT TOTAL				\$4,683,600	
RBSTP to WNRWF PROJECT TOTAL				\$4,683,600	

Notes:

(1.) 10.2 MGD sized for Ultimate Design

(2) Assumes 1 ARV per 3,000 feet of FM.
 (3.) Cost for directional drill based on similar projects in Sussex County, DE.

TABLE D-4 Alternative 2 - RBSTP Treated Effluent to WNRWF FM Alignment Option #2 - Coastal Highway Cost Estimate

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
RBSTP to WNRWF Force Main (1.)					
Mobilization (5%)	LS	\$300,000	•	\$300,000	
30" Force Main - Major Roadway Installation (2.)	LF		14,500		
30" Force Main - County Roadway Installation	LF		8,500		
Air Release Valves and MH	EA			\$35,000	
Isolation Valves (3.)	EA			\$90,000	
Directional Drill Rehoboth Canal (4.)	EA	\$360,000	1	\$360,000	
SUBTOTAL				\$5,535,000	
				0000.070	
10% Construction Contingency				\$830,250	
SUBTOTAL				\$6,365,250	
CONSTRUCTION TOTAL				\$6,365,250	
Project Costs		22%		\$1,400,355	
RBSTP to WNRWF Force Main PROJECT TOTAL				\$7,765,600	
RESTP to WNRWF PROJECT TOTAL				\$7,765,600	

Notes:
(1.) 10.2 MGD sized for Ultimate Design
(2.) Refers to portion installed along Coastal Highway (SR 1)
(3.) Assumes 1 ARV per 3,000 feet of FM.
(4.) Cost for directional drill based on similar projects in Sussex County, DE.

Project:	Wolfe Neck Headworks Upgrade Alternative 1 Computed By:									JVS
Location:	Sussex Co. Delaware	io opgaa					Checked	-		TAY
	Sussex Co.						Date of E			5/1/09
		T Head	works (27 mgd)				Project N			40284.19
Description:										
	Quantity									T-4-1
Description	No.	Basis		Total	Per	Total	Man	\$/Man	Total	Total
	Units		Unit		Unit		Hours	Hour		Cost
Civil			· ·							
Crushed Stone Bedding	253	CY	\$15	\$3,795	\$3	\$759	0.25	\$38	\$2,404	\$6,960
Fill (off-site material)	4275	CY	incl.		\$10	\$42,750	0.4	\$38	\$15	\$42,770
Asphalt Paving	1	LS	\$15,000.00	\$15,000				1		\$15,000
Asphan I aving	-			+,	1					ŕ
Structural									1	
	119	Сү	\$700	\$82,989						\$82,990
Slab Concrete		1								\$67,730
Wall Concrete	. 75			\$67,733						
painting	1	LS	\$15,000	\$15,000				1	1	\$15,000
									1	
Architectural										
Architectural Building		SF	1		incl.		incl.			
Large Overhead Door	1	EA	\$12,000	\$12,000	1		incl		ļ	\$12,000
Aluminum Grating	540	SF	\$35.00	\$18,900			0.4	\$38	\$15	\$18,920
Aluminum Stairways	3	RISER	\$300.00	\$900			1.000	\$38	\$38	\$940
Adminiati Stan ways	5									
Equipment							1			1
	1	LS	\$330,000	\$330,000					\$99,000	\$429,000
Fine Screens and Screw Wash Compactor	-		1 .						\$6,000	\$26,000
Screenings Conveyor	1	1		\$20,000						\$52,000
Heat Trace and Insulate Screens and Conveyo			1	\$40,000	1				\$12,000	, .
Slide Gates (48")	6	EA	\$14,400.00	\$86,400	\$1,000	\$6,000	120	\$38	\$4,560	\$96,960
Grit Dumpster	1	EA	\$5,000	\$5,000						\$5,000
Bar Rack	1	LS	\$5,000.00	\$5,000	\$500	\$500	80	\$38	\$3,040	\$8,540
Hoist Allowance	1	LS	\$10,000.00	\$10,000	\$1,500	\$1,500	120.000	\$38	\$4,560	\$16,060
Flow Meter	1 1	1	1 1	\$20,000					·	\$20,000
	1	1	1 1	\$20,000			1			\$20,000
Valve Vault	1		\$20,000.00	\$20,000						\$20,000
HVAC		LS	\$50,000							
IIVAC										
<u>Plumbing</u>	1	LS	\$10,000	\$10,000						\$10,000
Site World			1							
Site Work	1	LS	\$28,376	\$28,376				1		\$28,376
3% of Total Cost	1	L L.	\$20,570	\$28,370						\$20,570
Electrical				6100 194	1					\$189,174
20% of Total Cost	1		5 \$189,174	\$189,174						\$109,174
		1								
Startup										\$18,917
2 % of Total Cost]		\$ \$18,917	\$18,917						\$10,917
							1			
Piping							1			BOE 100
9 % of Total Cost	1	1 L	\$\$\$5,128	\$85,128						\$85,128
		<u> </u>		-		0.51.50	. 		0131 (00	61 3/7 000
		Subtota	1	\$1,084,300		\$51,500			\$131,600	\$1,267,000
	General C					\$2,600		5%	\$6,600	\$63,000
		Subtota	1	\$1,138,500		\$54,100		1	\$138,200	\$1,331,000
		Overhea	d 10%			\$5,400		10%	\$13,800	\$133,000
		Profi	it 5%	\$56,900) 5%	\$2,700		5%	\$6,900	\$67,000
		Subtota	1	\$1,309,300		\$62,200		1	\$158,900	\$1,530,000
	Ca	ntingenc						10%	\$15,900	\$153,000
I	Total Construc		* }	\$1,440,000		\$68,000			\$175,000	\$1,680,000
		ject Cost	1					22%		\$370,000
	TOTAL PROJEC			\$1,757,000		\$83,00			\$214,000	\$2,050,000

TABLE D-5 ENGINEER'S ESTIMATE OF PROBABLE CONSTRUCTION COST

Project:	Wolfe Neck Headwor	ks Upgrad	le Alternative 2				Compute	d By:		JVS
Location:	Sussex Co. Delaware						Checked			TAY
Owner:	Sussex Co.						Date of E	•		5/1/09
Description:	Alternative 2 WNRV	VF Head	works (17 mgd)			Project N	lo:		40284.19
	Quantity									
Description	No.	Basis	Per	Total	Per	Total	Man	\$/Man	Total	Total
	Units		Unit		Unit		Hours	Hour		Cost
<u>Civil</u>										
Crushed Stone Bedding	253	CY CY	\$15	\$3,795	\$3	\$759	0.25	\$38	\$2,404	\$6,960
Fill (off-site material)	3450	CY	incl.		\$10	\$34,500	0.4	\$38	\$15	\$34,520
Asphalt Paving	1	LS	\$15,000.00	\$15,000						\$15,000
Structural										
Slab Concrete	83	CY CY	\$700	\$58,100						\$58,100
Wall Concrete	62	CY	\$900	\$55,800						\$55,800
painting	1	LS	\$15,000	\$15,000						\$15,000
A web it a struct										
Architectural_ Architectural Building			#100.00							
Large Overhead Door		SF	\$150.00	#1- 000	incl.		incl.			
-	1	EA	\$12,000	\$12,000			incl			\$12,000
Aluminum Grating Aluminum Stairways	295	SF	\$35.00	\$10,325			0.4	\$38	\$15	\$10,340
Auminium Starways	. 3	RISER	\$300.00	\$900			1.000	\$38	\$38	\$940
Equipment										
Fine Screens and Screw Wash Compactor	1	LS	\$280,000	\$280,000					¢94.000	6264.000
Screenings Conveyor	1	LS	\$280,000	\$280,000					\$84,000	\$364,000
Heat Trace and Insulate Screens and Conveyo		LS	\$20,000						\$6,000	\$26,000
Slide Gates (36")	6		· ·	\$40,000	C1 000	@< 000	100		\$12,000	\$52,000
Grit Dumpster	0	EA EA	\$10,000.00 \$5,000	\$60,000	\$1,000	\$6,000	120	\$38	\$4,560	\$70,560
Bar Rack	1	1	\$5,000.00	\$5,000	6500	6600		620	62.040	\$5,000
Hoist Allowance	1	LS	· ·	\$5,000	\$500	\$500	80		\$3,040	\$8,540
Flow Meter	1	LS	\$10,000.00	\$10,000	\$1,500	\$1,500	120.000	\$38	\$4,560	\$16,060
Valve Vault	1	LS	\$20,000.00	\$20,000					(\$20,000
Valve Vaun	1	LS	\$20,000.00	\$20,000						\$20,000
HVAC		LS	\$50,000							
Plumbing	1	LS	\$10,000	\$10,000						\$10,000
			_							
Site Work										
3% of Total Cost	. 1	LS	\$24,025	\$24,025						\$24,025
				•						· · · ·
Electrical	*									
20% of Total Cost	1	LS	\$160,164	\$160,164						\$160,164
<u>Startup</u>	_									
2 % of Total Cost	1	LS	\$16,016	\$16,016						\$16,016
Pining		ĺ								
<u>Piping</u> 9 % of Total Cost		7.0	672.074	672.074						
5 76 01 10tal COSt	1	LS	\$72,074	\$72,074						\$72,074
		Subtotal		\$913,200		\$43,300			\$116,600	\$1,073,000
	General C		5%		5%	\$43,300		5%	\$116,600	\$1,073,000 \$54,000
• ·		Subtotal	3/0	\$958,900	5/0	\$45,500		376	\$122,400	\$1,127,000
		10%	\$95,900	10%	\$4,600	1	10%	\$12,200	\$1,127,000	
	C C	overhead) Profit	5%		5%	\$2,300		5%	\$12,200	\$115,000
		Subtotal	270	\$1,102,700	"	\$52,400	1	370	\$140,700	\$1,296,000
		1		109/	\$5,200		109/			
	Con	111%	1 21111 4681							
		tingency on Costs	10%		10%			10%	\$14,100	\$130,000
	Total Constructi		22%	\$1,213,000	22%	\$58,000 \$12,800		22%	\$155,000	\$1,430,000 \$1,430,000 \$314,000

TABLE D-6 ENGINEER'S ESTIMATE OF PROBABLE CONSTRUCTION COST

APPENDIX E

Wolfe Neck Conveyance Cost Estimates

N:\13947-000\Engineering\Reports\Final\Appendice Pages.doc

TABLE E-1 WNRWF to IBRWF Cost Estimate Alignment Option #1 - John J. Williams Highway (SR 24)

				J	
ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
······································	1				
WNRWF to IBRWF Force Main					
				;	`
Mobilization (5%)	LS	\$700,000	-	\$700,000	
30" Force Main (Major Highway Construction) (1.)	LF	\$225	28,750	\$6,468,750	
30" Force Main (Intermediate Highway Construction) (2.)	LF	\$175	1,700	\$297,500	
30" Force Main (County Road Construction) (3.)	LF	\$150	28,450	\$4,267,500	
Air Release Valves and MH (4.)	EA	\$7,000	20	\$140,000	
Isolation Valves	EA	\$45,000	4	\$180,000	
Miscellaneous Jack and Bore of Major Highway	EA	\$50,000	5	\$250,000	Assumes 5 Road Crossings
Directional Drill Coastal Highway	LS	\$300,000	1	\$300,000	
Directional Drill Love Creek	LS	\$300,000	2	\$600,000	
Directional Drill Burton Prong	LS	\$300,000	1	\$300,000	
SUBTOTAL				\$13,503,750	
10% Construction Contingency				\$1,350,375	
SUBTOTAL				\$14,854,125	
CONSTRUCTION TOTAL				\$14,854,125	
Project Costs		22%	[\$3,267,908	
WNRWF TO IBRWF FM PROJECT TOTAL				\$18,122,000	

Notes:

(1.) Refers to the portion of the force main installed in John J. Williams Highway (SR 24)
(2.) Refers to the portion of the force main installed in Beaver Dam Road (SR 23) and Indian Mission Road (SR 5)
(3.) Refers to the portion of the force main installed along County Roads.
(4.) Assumes 1 ARV per 3,000 feet of FM.

Alignn					
ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
WNRWF to IBRWF Force Main					
Mobilization (5%)	LS			\$750,000	
30" Force Main (Major Highway Construction) (1.) 30" Force Main (Intermediate Highway Construction) (2.)	LF LF				
30" Force Main (County Road Construction) (3.)					
Air Release Valves and MH (4.)	EA				
Isolation Valves	EA			\$180,000	
Miscellaneous Jack and Bore of Major Highway	EA			\$250,000	
Directional Drill Coastal Highway	LS			+++++++++++++++++++++++++++++++++++++++	
Directional Drill Burton Prong SUBTOTAL	EA	\$300,000		\$300,000 \$14,380,000	
10% Construction Contingency				\$1,438,000	
SUBTOTAL		· · · · ·	<u> </u>	\$15,818,000	
CONSTRUCTION TOTAL				\$15,818,000	
Project Costs		22%		\$3,479,960	
WNRWF TO IBRWF FM PROJECT TOTAL			1	\$19,298,000	

TABLE E-2 WNRWF to IBRWF Cost Estimate

Notes:

(1.) Refers to the portion of the force main installed in John J. Williams Highway (SR 24)
(2.) Refers to the portion of the force main installed in Beaver Dam Road (SR 23) and Indian Mission Road (SR 5)
(3.) Refers to the portion of the force main installed along County Roads.
(4.) Assumes 1 ARV per 3,000 feet of FM.

TABLE E-3 WNRWF to IBRWF Cost Estimate Alignment Option #3 - Beaver Dam Road (SR 23)

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
WNRWF to IBRWF Force Main					
Mobilization (5%)	LS	\$680,000		\$680,000	
24" Force Main (Major Highway Construction) (1.)	LF	\$225			
24" Force Main (Intermediate Highway Construction) (2.)	LF	\$175	28,550		
24" Force Main (County Road Construction) (3.)	LF	\$150	32,950	\$4,942,500	
Air Release Valves and MH (4.)	EA	\$7,000			
Isolation Valves	EA			\$100,000	
Miscellaneous Jack and Bore of Major Highway	EA			\$250,000	
Directional Drill Coastal Highway	LS	\$300,000	11	\$300,000	
SUBTOTAL				\$13,027,250	
10% Construction Contingency		·		\$1,302,725	
SUBTOTAL				\$14,329,975	
				\$14,329,975	
Project Costs		22%		\$3,152,595	
WNRWF TO IBRWF FM PROJECT TOTAL	1			\$17,482,500	

Notes:

Refers to the portion of the force main installed in John J. Williams Highway (SR 24)
 Refers to the portion of the force main installed in Beaver Dam Road (SR 23) and Indian Mission Road (SR 5)

(3) Refers to the portion of the force main installed along County Roads.
 (4.) Assumes 1 ARV per 3,000 feet of FM.

TABLE E-4Wolfe Neck Transfer Pump Station to IBRWFAlternative #1 - Raw WW from RBSTP to WNRWF

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
Mobilization	LS	\$125,000	1	\$125,000	
Mechanical Pipes, Valves and Fittings	LS	\$325,000	1	\$325,000	
Electrical/Control Building	LS	\$80,000	1	\$80,000	Pre-Engineered Building Assumed
Excavation, Dewatering, Sheeting, and Shoring and Installation of Cast In Place Concrete Wetwell and Valve Vault and Hatches	LS	\$800,000	1	\$800,000	Wetwell sized for 6.9 mgd, assumed total depth of 21'
Mechanical Pumps and Accessories	LS	\$350,000	1	\$350,000	185 HP Pumps
Electrical, Instrumentation and Controls	LS	\$575,000	1	\$575,000	Does Not Include Backup Generator
Sitework and Site Piping	LS	\$200,000	1	\$200,000	No Site Fencing or Paving Included
Station Startup and Testing	LS	\$30,000	1	\$30,000	
Pump Station Construction Sub-total				\$2,485,000	
Project Contingency	10%			\$248,500	
Project Construction Total				\$2,733,500	
Project Costs	22%			\$601,370	
Pump Station Project Total				\$3,330,000	

TABLE E-5Wolfe Neck Transfer Pump Station to IBRWFAlternative #2 - Treated Effluent from RBSTP to WNRWF

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
Mobilization	LS	\$110,000	1	\$110,000	
Mechanical Pipes, Valves and Fittings	LS	\$280,000	1	\$280,000	
Electrical/Control Building	LS	\$80,000	1	\$80,000	Pre-Engineered Building Assumed
Excavation, Dewatering, Sheeting, and Shoring and Installation of Cast In Place Concrete Wetwell and Valve Vault and Hatches	LS	\$750,000	1	\$750,000	Wetwell sized for 5.4 mgd, assumed total depth of 20'
Mechanical Pumps and Accessories	LS	\$320,000	1	\$320,000	160 HP Pumps
Electrical, Instrumentation and Controls	LS	\$500,000	1	\$500,000	Does Not Include Backup Generator
Sitework and Site Piping	LS	\$200,000	1	\$200,000	No Site Fencing or Paving Included
Station Startup and Testing	LS	\$30,000	1	\$30,000	
Pump Station Construction Sub-total				\$2,270,000	
Project Contingency	10%			\$227,000	
Project Construction Total			-	\$2,497,000	
Project Costs	22%			\$549,340	
Pump Station Project Total				\$3,050,000	

TABLE E-6Wolfe Neck Transfer Pump Station to IBRWFAlternative #3 - County Only flows to IBRWF

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
Mobilization	LS	\$100,000	1	\$100,000	
Mechanical Pipes, Valves and Fittings	LS	\$200,000	. 1	\$200,000	
Electrical/Control Building	LS	\$80,000	1	\$80,000	Pre-Engineered Building Assumed
Excavation, Dewatering, Sheeting, and Shoring and Installation of Cast In Place Concrete Wetwell and Valve Vault and Hatches	LS	\$700,000	1	\$700,000	Wetwell sized for 3.2 mgd, assumed total depth of 19'
In Place Concrete Werwein and Valve Vach and Place Concrete Werwein and Place Concrete Werwein and Valve Vach and Place Concrete Werwein and	LS	\$290,000	1	\$290,000	100 HP Pumps
Electrical, Instrumentation and Controls	LS	\$400,000	1	\$400,000	Does Not Include Backup Generator
Sitework and Site Piping	LS	\$200,000	1	\$200,000	No Site Fencing or Paving Included
Station Startup and Testing	LS	\$30,000	1	\$30,000	
Pump Station Construction Sub-total				\$2,000,000	
Project Contingency	10%			\$200,000	
Project Construction Total				\$2,200,000	
Project Costs	22%			\$484,000	
Pump Station Project Total				\$2,680,000	

TABLE E-7 Cave Neck Road to ANSRWRF Force Main

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
	1				
Cave Neck Rd to PWTP Site FM					
Mobilization (5%)	LS	\$460,000	-	\$460,000	
24" Force Main (Major Highway Construction) (1.)	LF	\$225	21,016	\$4,728,600	
24" Force Main (Intermediate Highway Construction) (2.)	LF	\$175	1,375	\$240,625	
24" Force Main (County Road Construction) (3.)	LF	\$150	11,829	\$1,774,350	
24" Force Main (Easement Installation) (4.)	LF	\$100	8,480	\$848,000	
Air Release Valves and MH (5.)	EA	\$7,000	15	\$105,000	
Isolation Valves	EA	\$25,000	4	\$100,000	
Miscellaneous Jack and Bore of Major Highway	EA	\$50,000	5		
Directional Drill Coastal Highway	LS	\$300,000	1	\$300,000	
SUBTOTAL				\$8,806,575	
·					
10% Construction Contingency				\$880,658	
SUBTOTAL				\$9,687,233	
CONSTRUCTION TOTAL				\$9,687,233	
Project Costs		22%		\$2,131,191	
CAVE NECK RD TO ANSRWRF FM PROJECT TOTAL				\$11,820,000	

Notes:

Notes: (1.) Refers to the portion of the force main installed in Coastal Highway (SR 1) (2.) Refers to the portion of the force main installed in Beach Highway (SR 16) (3.) Refers to the portion of the force main installed along County Roads. (4.) Refers to the portion of the force main installed in Easements west of Union Street Extension (SR 5) (5.) Assumes 1 ARV per 3,000 feet of FM.

TABLE E-8 WN Transfer PS to Cave Neck Road Force Main

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
Cave Neck Rd to ANSRWRF FM					
Mobilization (5%)	LS			\$365,000	
24" Force Main (Major Highway Construction) (1.) 24" Force Main (Intermediate Highway Construction) (2.)	LF LF	\$175			
24" Force Main (County Road Construction) (3.) 24" Force Main (Easement Installation)	LF LF	\$100	9,632	\$963,200	
Air Release Valves and MH (5.) Isolation Valves	EA EA	\$7,000 \$25,000		\$91,000 \$100,000	
Miscellaneous Jack and Bore of Major Highway SUBTOTAL	EA	\$50,000	1	\$50,000 \$6,887,500	
10% Construction Contingency				\$688,750	
SUBTOTAL				\$7,576,250	
CONSTRUCTION TOTAL				\$7,576,250	
Project Costs		22%		\$1,666,775	
WN TRANSFER PS TOCAVE NECK RD FM PROJECT TOTAL				\$9,240,000	

Notes: (1.) Refers to the portion of the force main installed in Coastal Highway (SR 1) (2.) Refers to the portion of the force main installed in Kings Road (SR 9) (3.) Refers to the portion of the force main installed along County Roads. (4.) Refers to the portion of the force main installed in Easements from WNRWF to Gills Neck Rd (CR 297). (5.) Assumes 1 ARV per 3,000 feet of FM.

Alignm	nent Opti	on #3 - Beav	ver Dam Ro	ad (SR 23)	
ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
WNRWF to IBRWF Force Main					
Mobilization (5%) 20" Force Main (Major Highway Construction) (1.)	LS			\$580,000 \$1,420,000	
20° Force Main (Intermediate Highway Construction) (2.) 20° Force Main (Intermediate Highway Construction) (3.)	LF	\$150	28,550	\$4,282,500 \$4,118,750	
Air Release Valves and MH (4.) Isolation Valves	EA EA	\$20,000	4	\$80,000	
Miscellaneous Jack and Bore of Major Highway Directional Drill Coastal Highway	EA LS			\$250,000 \$250,000 \$11,142,250	
SUBTOTAL 10% Construction Contingency				\$1,114,225	
SUBTOTAL				\$12,256,475	
CONSTRUCTION TOTAL				\$12,256,475	
Project Costs		22%		\$2,696,425 \$14,950,000	

TABLE E-9 WNRWF to IBRWF Cost Estimate: County Flows Only (Alternative 3)

Notes:
(1.) Refers to the portion of the force main installed in John J. Williams Highway (SR 24)
(2.) Refers to the portion of the force main installed in Beaver Dam Road (SR 23) and Indian Mission Road (SR 5)
(3.) Refers to the portion of the force main installed along County Roads.
(4.) Assumes 1 ARV per 3,000 feet of FM.

TABLE E-10 Alternative 1 - WNRWF to RBSTP FM Alignment Option #1 - Permanent Easement Installation **Cost Estimate**

ITEM	UNIT	UNIT COST	QUANTITY	ITEM TOTAL	NOTES
RBSTP to WNRWF Force Main (1.)					
Mobilization (5%)	LS			\$90,000	
16" Force Main - County Roadway Installation	LF		8,000		
16" Force Main - Permanent Easement Installation	LF		8,200		
Air Release Valves and MH (2.)	EA	\$7,000	6		
Isolation Valves	EA	\$10,000	2	\$20,000	
Directional Drill Rehoboth Canal (3.)	EA	\$200,000	1	\$200,000	
SUBTOTAL				\$1,726,000	
		L		#470.000	
10% Construction Contingency		l		\$172,600	
SUBTOTAL		l		\$1,898,600	
CONSTRUCTION TOTAL				\$1,898,600	
Project Costs		22%		\$417,692	
RBSTP to WNRWF Force Main PROJECT TOTAL				\$2,320,000	
RESTE TO WINKWE FORCE WAIN PROJECT TOTAL	1987 C.		CONCERNENCE STREET		
RESTP to WNRWF PROJECT TOTAL				\$2,320,000	

Notes:

(1.) 10.2 MGD sized for Ultimate Design
(2.) Assumes 1 ARV per 3,000 feet of FM.
(3.) Cost for directional drill based on similar projects in Sussex County, DE.

APPENDIX F

Inland Bays Regional Wastewater Facility Cost Estimates

Appendix F: Inland Bays Regional Wastewater Facility Expansion Cost Estimates

STEARNS & WHELER^{III} Environmental Engineers & Scientists

Inland Bays Regional Wastewater Facility Study Phase Estimate of Capital Cost

Cost Summary for Inland Bays Phase 2 Expansion July 1, 2009 Table F-1

		Date of									
		Comparative			Comparative	Theite This C	anacity Scaled Cost	Cost	Cost Plus 5% Mobilization	3	stimated Cost
Description	Comparative Cost	Cost	Date of Analysis	DSCRIPTED LOST				000	\$540.000		\$540,000
Screeninp	\$513,000	March-09	Mar-09	000,5158	00.0			000	\$880.000		\$880,000
Crit Damonal	\$1,013,927	Sep-04	Mar-()9	\$1,186.000	9.00	_		000	\$370.000		\$370.000
	\$369.979	Sep-04	Mar-09	\$433.000	7.20			000	60100000000000000000000000000000000000		\$1 800 000
Instruction Distribution (Convert 1 across 2)	\$2.050.000	June-07	Mar-09	\$2,204,000	2.75	mgd 1	1.83 \$1.710,000	000	31,800,000		\$370.000
Biolac (reannen System Convert Lagour 2)	\$360.979	Sep-04	Mar-09	\$433.000	7.20			000	000,070 66		¢1 070 000
Secondary Claritier Distribution Dox	\$2,437,052	Sep-04	Mar-09	\$2,850,000	7.20		1.38 \$1,020,000	000	\$1,0/0,000		\$370.000
Secondary Cuanties	\$542,440	Sep-04	Mar-09	\$634,000	7.20			000	000,000		\$400.000
Chloring Contact Tank	\$400,000	Jan-07	Mar-09	\$433,000	3.00		-	000	000'000 CS		\$2.610.000
Name Storage 1 appoint (45 Day Winter ADF)	\$1,283,750	Feb-07	Mar-09	\$1,390.000	23.50		60 34,490,000 eego 000	000	\$870.000		\$870.000
Item Diumoine Station	\$569,000	Feb-07	Mar-()9	\$616,000	0.58			000	\$2 070 000		\$3.920.000
Integration 1 milling owned	\$4,149.843	Aug-03	Mar-09	\$5,260,000	9.00			1,000	000,020,000		\$690.000
Solids Haluluig System	\$617,000	Oct-07	Mar-09	\$655.000	3.00	MG	3.00 3.00 5060,000	000	\$370,000		\$370,000
Trait Judge to many ender the second s							orce .	000	000 014		\$740.000
Cake Stolage Duituity			Oct-08				5700,000	1 000	9/140,000		6 6 111 000
Administration Building Expansion Siterated (Founded)											\$15,000,000 \$450.000
General Site Work @ 3% of Subtotal											\$1.350,000
Yard Piping @ 9% of Subtotal											\$3,000,000
Electrical/Controls @ 20% of Subtotal											\$300,000
Startup/Testing @ 2% of Subtotal											\$195,000
FM to Spray Field #10											IBRWF
Parcel # 10 Spray Field Development											\$20,300,000
Subtotal (rounded)											\$2,000,000
Construction Contingencies @ 10% of Subtotal											\$22,300,000
Construction Cost											\$4,900,000
Project Costs @ 22% of Construction Cost											\$27,200,000
10101 LOUDING CONTRACT CONT (2002)											

Notes:

Cost Escalhation based on ENR Construction Cost Index
 Scaled Cost based on formul Cost 2 = Cost 1 * (Fow 1) * (0.62) with flows in med units.
 Scaled Cost based on formul Cost 2 = Cost 1 * (Fow 1) * (0.62) with Accritical and continuentwork of the sectoring from Wolfs (March 2000) with Accritical and continuentwork of the floate reterment from Wolfs (March 2000) with Accritical and continuentwork of the floate reterment system from NERWF Expansion (With More) and Clorinic Cost for Biolac reterment system from NERWF Expansion (WIKWF Expansion (WIKWF Expansion (WIKWF Expansion) (SCRWF Expansion No. 2 (Bid 2004)).
 Costs for influent dist box, grit, studge handling, clarifors, return studge prunping sation, and clorinic Costs for influent dist box, grit, studge handling, clariform (SCRWF Expansion No. 2 (Bid 2004)).
 Costs for Wates Student Form January 2009 estimates for Inland Bays RVF for infration pumus, naterial take-off for jagon (MIKR).
 Costs for Wates Student Form January 2009 estimates for Inland Bays RVF for infration pumus, naterial take-off for jagon (Inst. Costs for Yang Piolag, and Farding.
 No bilds assumed for trave structures and the contrast only = \$15, 201, 101.
 SCRWF Expansion No. 2 Cost 2004 dollars) - C.O. Falter contrast only = \$15, 201, 101.
 SCRWF Expansion No. 2 Cost 2004 dollars) - C.O. Falter contrast only = \$15, 201, 101.
 SCRWF Fixpansion No. 2 Cost 2004 dollars) - C.O. Falter contrast only = \$15, 201, 101.
 SCRWF Fixpansion No. 2 Cost 2004 dollars) - C.O. Falter contrast only = \$15, 201, 101.
 SCRWF Fixpansion No. 2 Cost 2004 dollars) - C.O. Falter contrast only = \$15, 201, 101.
 SCRWF Fixpansion No. 2 Cost 2004 dollars) - C.O. Falter contrast only = \$15, 201, 101.
 SCRWF Fixpansion No. 2 Cost 2004 dollars - C.O. Falter contrast only = \$15, 201, 101.
 SCRWF Fixpansion No. 2 Cost 2004 dollars - C.O. Falt

Appendix F: Inland Bays Regional Wastewater Facility Expansion Cost Estimates

Inland Bays Regional Wastewater Facility Study Phase Estimate of Capital Cost

Cost Summary for Inland Bays Phase 3A Expansion July 1, 2009 **Table F-2**

				a the second second second second						
					Comnarative			Ű	Cost Plus 5%	
		Date of Comparative		Preshad Carl	Canacity	Ilaits This Canacity		Scaled Cost M	Mobilization	Estimated Cost
Description	Comparative Cost	Cost	URLE OF ADRIVESS	a losvarated - cuar	Calmara C EO	8	:200	_	\$540.000	\$540,000
Coreening	\$513,000	March-09	Mar-09	000,216\$	00.0				\$1 200 000	\$1 200.000
Distant Content Content (Convert WAS Lacoon)	\$1.060,000	Jun-07	Mar-09	\$1,139,000	1.83			_	1,070,000	£1 070 000
Bloige Licalificiti oystelli (Collivert 17730 248001)	\$7 137 050	Sen-04	Mar-09	\$2,850,000	7.20	MG 138			000,010,000	\$1,010,000
Secondary Clarifiers	400,104,70		Mar OD	\$433 000	3 00	med L49		\$280,000	\$290,000	\$290,000
Chlorine Contact Tank	\$400,000	Jan-U/	INTAT-US	000,000.0	02.00	00 UVU		\$2 190 000	\$2.300.000	\$2,300,000
New Storage Lagoon (45 Day Winter ADF)	\$1,283,750	Feb-07	Mar-09	\$1,390,000	0.62	-			\$1 170.000	\$1.170,000
Tribution Dimming Station	\$569,000	Feb-07	Mar-09	\$616,000	80.0				01 640 000	\$1 540 000
	\$970.000	Jan-07	Mar-09	\$1,051,000	3.00	mgd 5.18		\$1,4/0,000 3	000,046,10	000,070,00
Waste Sludge Holding Lagoons	1 000to/20 1									20,100,000
Subtotal (rounded)										\$240,000
General Site Work @ 3% of Subtotal										\$730,000
Yard Piping @ 9% of Subtotal										\$1,620,000
Electrical/Controls @ 20% of Subtotal										\$160,000
Startup/Testing @ 2% of Subtotal										\$1,840,000
Cordrey Parcel Spray Field Development										\$12,700,000
Subtotal (rounded)										\$1,300,000
Construction Contingencies @ 10% of Subtotal	_									\$14,000,000
Construction Cost										\$3,100,000
Project Costs @ 22% of Construction Cost										\$17,100,000

Project Costs @ 22% of Construction Cost TOTAL PROJECT COST (2009 Dollars

Notes: 1. Cost for screening from Wolfe Neck Regional Study (March 2009), with electrical and contingency costs removed.
2. Scaled Cost based on formula Cost 2 = Cost 1 * (Flow 2/ Flow 1) * (16.62) with flows in mgd units.
3. Costs for Flokate transmott system from January 2007 estimates for Inland Bays RWF.
4. Costs for Chlorine Contact Tank from WNRWF Espansion Cost Estimate.
5. Costs for influent dist box, grut, sludge handling, clarifiers, return sludge punping station, and chemical feed system from SCRWF Expansion No. 2 (Bid 2004).
6. Costs for Komet Irrigation Spray Cuns from January 2009 estimates for Inland Bays RWF.
7. Costs for Komet Irrigation Spray Cuns from January 2009 estimates for Inland Bays RWF.
8. No piles assumed for new structures.
9. Assumptions for Y and Piping, Of Alerso January 2000 estimates for Inland Bays RWF.
9. Assumptions for Y and Piping, Of Alerso January 2000 estimates for Inland Bays RWF.
9. Assumptions for Y and Piping, Of Alerso January 2000 estimates for Inland Bays RWF.
9. Assumptions for Y and Piping, Of Alerso January 2004 estimates for Inland Bays RWF.
9. Assumptions for Y and Piping, Of Alerso January 2000 estimates for Inland Bays RWF.
9. Assumptions for Y and Piping, Of Alerso January 2000 estimates for Inland Bays RWF.
9. Dista starumed for Paller Contract = 51,017,000 Yang Piping, Of Piler Contract = 51,017,000 Yang Piping, Of Piler Contract = 51,017,000 Yang Piping, Of Teller Contract = 51,017,000 Yang Piping, Of Teller Contract = 51,017,000 Yang Piping, Of Teller Contract = 51,005,000 Yang Piping, Of Piler Contract = 51,005,000 Yang Piping, Of Teller Contract = 51,005,000 Yang Piping, Of Yan

APPENDIX G

Cost Sharing Model

ltem			County Flow Contribution	Rehoboth Flow Contribution	Rehoboth Cost
NO	Description	Design Criteria (1.)	(MGD) (2.)	(MGD) (2.)	Share
-	DDCTD Dumning Ctation	3.4 MGD Max Month	0.0	3.4	100%
	RD3 F Fultipility Station Ferror Main to MAIDIME (Ontion #1)	3.4 MGD Max Month	0.0	3.4	100%
۲ ۲		10 MGD Max Month	6.4	3.6	36.2%
ۍ م	VVINKVVF READWOIKS UP9LAUES	4 6 MGD Max Month	2.1	2.5	54.3%
1 Q	VVINKVYF (0 IDKVYF TTATISTET FULTUNG ONATOR	4.6 MGD Max Month	2.1	2.5	54.3%
~ o	FOICE MAILL (0 IDIXVI (Option #2)	3.7 MGD Max Month	0.0	1.7	100.0%
0	IDRAVE FILASE 2 Upgrades	5.2 MGD Max Month	0.7	0.8	53.3%
ۍ ح	IDRVVF FILASE J UP91 auco IRDIVIE Dhase 4 I Indrades	7.5 MGD Max Month	0.0	0.0	0.0%
2					

Alternative #1A - RAW WASTEWATER FROM REHOBOTH WITH EXCESS PUMPED TO IBWRF

Appendix G: Table G-1

Notes:

(1.) All Design Criteria is for 2030 maximum month except Items 1 and 2A, which are for buildout per the RBWWTP Alternative Discharge Cost Evaluation and Item 5, which incoporates additional 1.5 factor to account for pumped flows.
 (2.) Flow contribution for phases 2 through 4 are based on the increase from the previous phase (i.e Phase 1 to 2 is 3.7-2.0=1.7 mgd).

6-2 0-2
Ð
ā
ab
Ē
:-:
C
×
5
č
Ð
ð
ð
<1

Item			County Flow Contribution (MGD)	Rehoboth Flow Contribution (MGD)	Rehoboth Cost
No.	Description	Design Criteria (1.)	(2.)	(2.)	Share
-	RESTP Primping Station	3.4 Max Month	0.0	3.4	100%
40	Force Main to WNRWF (Ontion #1)	3.4 Max Month	0.0	3.4	100%
	1 0100 main to written / Open	10 MGD Max Month	6.4	3.6	36.2%
» م	VVINICVUL FLEADWOINS OPSIGGES	4.6 MGD Max Month	2.1	2.5	54.3%
	IRPINE Drace 2 Hourades	2.9 MGD Max Month	0.9	0.0	0.0%
о Ц	Force Main to DW/WP	4.6 MGD Max Month	2.1	2.5	54.3%
5	DM/M/P Treatment Canacity	4.6 MGD Max Month	2.1	2.5	54.3%
	I and/Fasements	NA	2.1	2.5	54.3%
2					

Alternative #1R- RAW WASTEWATER FROM REHOBOTH WITH EXCESS PUMPED TO PRIVATE WTP

Notes:

All Design Criteria is for 2030 maximum month except Items 1 and 2A, which are for buildout per the RBWWTP Alternative Discharge Cost Evaluation and Item 5, which incorporates additional 1.5 factor to account for pumped flows.
 Capacity of the IBWRF will be 2 mgd after phase 1 is completed.Flow contribution for phases 2 through 4 are based on the increase from the previous phase (i.e. Phase 1 to 2 is 3.7-2.0=1.7 mgd).

ი. ე
Φ
Δ
ab
\vdash
Ö
×
σ
Ĉ
ø
3
Ā

Item			County Flow	Rehoboth Flow	Dehahath Cast
	Description	Design Criteria (1.)	Contribution (MGD) (2.)		Share
		3 A Max Month	0.0	3.4	100.0%
-	KBSTP Pumping Station	O. T. Max Month		34	100.0%
2A	Force Main to WNRWF (Option #1)	5.4 INIAX INICITIT	0.0		100 001
i	Dobokoth Treatment Diant Imnrovements	3.4 Max Month	0.0	3.4	100.0%
Ч С Г		R R MGD Max Month	6.6	0.0	0.0%
<u>م</u>	WNRWF Headworks Upgrades		T	1 5	41 7%
ď	WINRWF to IBRWF Transfer Pumping Station	3.6 MGD Max Month	2.1	2	
> r		3.6 MGD Max Month	2.1	1.5	41./%
-		0 7 MOC Max Month	0.0	15	88.2%
∞ 	IBRWF Phase 2 Upgrades		2:0	VIN	100 002
4	I and/Facements		N/A		100.070
2					

Alternative #2A - Treated Effluent FROM Rehoboth Pumped to WNRWF with Excess to IBRWF

All Design Criteria is for 2030 maximum month except Items 1 and 2A, which are for buildout per the RBWWTP Alternative Discharge Cost Evaluation and Item 4, which incoporates additional 1.5 factor to account for pumped flows.
 Capacity of the IBWRF will be 2 mgd after phase 1 is completed.Flow contribution for phase 2 is based on the increase from the previous phase (i.e. Phase 1 to 2 is 3.7-2.0=1.7 mgd).

0 4
Ð
q
Table
-
Ö
×
÷
č
g
d

*	Alternative #2D - INCALLO WASHENDER				
ltem			County Flow Contribution	Flow Contribution	Rehoboth Cost
2	Description	Design Criteria (1.)	(MGD) (2.)	(MGD) (2.)	Share
NO.					
	PDCTD D	3.4 Max Month	0.0	3.4	100.0%
		3 4 Max Month	0.0	3.4	100.0%
2A	Force Main to VVINKVVF (Option #1)		00	34	100.0%
A BA	Rehoboth Treatment Upgrades	0.4 IVIAA IVIUIIII			/00/0
-	INNIDIN/E Landworke I Ingrades	6.6 MGD Max Month	6.6	0.0	0.0.0
0	VVINKVVF FIEduworks Upgrades	3 6 MGD Max Month	2.1	1.5	41.7%
9	WNRWF to ANSWERF TRANSTER PUMPING STATION		ic		0 U%
8	IBRWF Phase 2 Upgrades		0.0		44 70/
4 4 4	+	3.6 MGD Max Month	2.1	C.L	41.7%
4	-	2 6 MCD Max Month	21	1.5	41.7%
12	PWWP Treatment Capacity			1. 1	A4 70/
12	I and/Escamante	ſ	2.1	C.I	41.7 /0
2	Laliu/Lassingins				

TREATED WASTEWATER FROM REHOBOTH WITH EXCESS PUMPED TO PRIVATE WTF ativo #7R A It.

(1.) All Design Criteria is for 2030 maximum month except Items 1 and 2A, which are for buildout per the RBWWTP Alternative Discharge Cost Evaluation and Item 4, which incoporates additional 1.5 factor to account for pumped flows.
(2.) Capacity of the IBWRF will be 2 mgd after phase 1 is completed.Flow contribution for phase 2 is based on the increase flow 2.0-2.0-0.9 mgd).

С Ч
Φ
9
Tal
Ö
×
g
en
dd
Ā

ltem		Docian Criteria (1)	County Flow Contribution (MGD) (2.)	Rehoboth Flow Contribution (MGD) (2.)	Rehoboth Cost Share
No.	Description				
				10	10007
-	RRSTP Plimping Station	3.4 Max Month	0.0	0.4	0/ 001
- <	Doboboth Traatmant I Indrades	3.4 Max Month	0.0	3.4	100%
5	Religiout reaminer opgrace		0.0	3.4	100%
200			0.0	3.4	100%
ည္က	Kenopoth Ocean Outial	C C MC MC Mc th	e e	00	0.0%
Ω	WNRWF Headworks Upgrades		0.0	0.0	
e G	WNRWF to IBRWF/PWWP P.S.	2.1 MGD Max Month	2.1	0.0	0.0%
~	Force Main to IRRWF (Option #3)	2.1 MGD Max Month	2.1	0.0	0.0%
- 0		3.7 MGD Max Month	1.7	0.0	0.0%
	IDIANT FIRAGE OPGIAGOO	5 0 MGD Max Month	1.3	0.0	0.0%
ת			0	000	70 U
13	Land/Easements	N/A	0.0	0.0	0.0.0
Nictor.					

REHOBOTH OUTFALL ALTERNATIVE WITH COUNTY CONTINUING TO PUMP TO IBWRF Alternative #3 =

(1.) All Design Criteria is for 2030 maximum month except Items 1 and 2A, which are for buildout per the RBWWTP Alternative Discharge Cost Evaluation and Item 4, which incoporates additional 1.5 factor to account for pumped flows.
(2.) Capacity of the IBWRF will be 2 mgd after phase 1 is completed. Flow contribution for phase 2 is based on the increase from the previous phase (i.e. Phase 1 to 2 is 3.7-2.0=1.7 mgd).

ဖု
9 U
Ð
ab
Ĥ
Ċ)
×
īdi
e
dd
₹

			County Flow	Rehoboth Flow	
Item No	Description	Design Criteria (1.)	Contribution (MGD)	Contribution	Rehoboth Cost Share
-	RBSTP Pumping Station	3.4 Max Month	0.0	3.4	100.0%
2B	Force Main to Rehoboth (Option #1)	2.1 Max Month	2.1	0.0	0.0%
3A	Rehoboth Treatment Upgrades	3.4 Max Month	0.0	8.3	100.0%
ЗB	Rehoboth FM to Ocean Outfall	5.4 Max Month	2.1	2.5	54.3%
ဒ္ဌ	Rehoboth Ocean Outfall	5.4 Max Month	2.1	2.5	54.3%
4	WNRWF Upgrades	4.4 MGD Max Month	4.4	0.0	0.0%
പ	WNRWF Headworks Upgrades	6.6 MGD Max Month	6.6	0.0	0.0%
ဖ	WNRWF to IBRWF/PWWP P.S.	2.1 MGD Max Month	2.1	0.0	0.0%
∞	IBRWF Phase 2 Upgrades	2.9 MGD Max Month	0.9	0.0	0.0%
13	Land/Easements		0.0	0.0	0.0%

Alternative #4 - COMBINED REHOBOTH AND COUNTY OCEAN OUTFALL

Notes:

(1.) All Design Criteria is for 2030 maximum month except Items 1 and 2A, which are for buildout per the RBWWTP Alternative Discharge Cost Evaluation and Item 4, which incoporates additional 1.5 factor to account for pumped flows.
(2.) Capacity of the IBWRF will be 2 mgd after phase 1 is completed. Flow contribution for phase 2 is based on the increase fination from the previous phase (i.e. Phase 1 to 2 is 2.9-2.0=0.9 mgd).

6B
\sim
Ŷ.
(7)
$\mathbf{\nabla}$
Ψ
_
$\mathbf{\Omega}$
<u>m</u>
•
([¬])
\mathbf{O}
\mathbf{x}
σ
Ē
<u> </u>
CD
õ
노
Ω

ltem No.	Description	Design Criteria (1.)	County Flow Contribution (MGD)	Kenoboth Flow Contribution	Rehoboth Cost Share
-	RBSTP Pumping Station	3.4 Max Month	0.0	3.4	100.0%
2B	Force Main to Rehoboth (Option #1)	4.9 Max Month	2.1	0.0	0.0%
3A 3A	Rehoboth Treatment Upgrades	3.4 Max Month	0.0	8.3	100.0%
3B	Rehoboth FM to Ocean Outfall	8.3 Max Month	4.9	3.4	41.0%
ဗ္ဂ	Rehoboth Ocean Outfall	8.3 Max Month	4.9	3.4	41.0%
4	WNRWF Upgrades	4.9 Max Month	4.4	0.0	0.0%
2	WNRWF Headworks Upgrades		6.6	0.0	0.0%
ဖ	WNRWF to IBRWF/PWWP P.S.	4.9 Max Month	2.1	0.0	0.0%
∞	IBRWF Phase 2 Upgrades		0.9	0.0	0.0%
13	Land/Easements	1	0.0	0.0	0.0%

Alternative #4B - COMBINED REHOBOTH AND COUNTY OCEAN OUTFALL

Notes:

(1.) All Design Criteria is for buildout maximum month and Item 4, which incoporates additional 1.5 factor to account for pumped flows.

SUMMARY OF TOTAL CAPITAL COSTS ALTERNATIVES #1, #2 and Analysis of Private Wastewater Treatment Provider VERSION: Oct 19, 2009: Final Draft of Report

		Alt	ernative #1A - Rav	Alternative #1A - Raw Wastewater Pumped to WNRWF	d to WNRWF	Alternativ	e #1B Private Wast	itive #1B Private Wastewater Treatment Provider	rovider	Alte	rnative #2A - Trea	Alternative #2A - Treated Effluent Pumped to WNRWF	1 to WNRWF	Alter	Alternative #2B Private Wastewater Treat	Wastewater Treat
Provintion	li c.e.	Tahlo	Desinn Criteria	Capacity	Total Cost	Table	2030 Design Criteria	2030 Capacity	Total Cost	Table 2	Table 2030 Design Criteria	2030 Capacity	Total Cost	Table	Table 2030 Design Criteria	2030 Capacity
Itelu Descub	100	alue -		l Grandna												
1 DDCTO	DOCTO Dumning Station	-	3 4 MGD Max Month	10.2 MGD Peak Hour	\$3.001.000	•	3.4 Max Month	10.2 MGD Peak Hour	\$3,001,000	N/A	3.4 Max Month	10.2 MGD Peak Hour	\$900,000	N/A	3.4 Max Month	10.2 MGD Peak Hour
20 Earce Me	Force Main to MNRWF (Ontion #1)	Z	3.4 MGD Max Month	+	\$3,123,000	51	3.4 Max Month	10.2 MGD Peak Hour	\$3,123,000		3.4 Max Month	10.2 MGD Peak Hour	\$3,500,000	<u>Б</u>	3.4 Max Month	10.2 MGD Peak Hour
	Force Main to Rebohoth (Ontion #1)	•	-			•		•	•					•	•	-
_	Rehohoth Treatment Undrades	•	-		*				-	•	3.4 Max Month	3.4 Max Month	\$2,930,000	•	3.4 Max Month	3.4 Max Month
_	Rehoboth FM to Ocean Outfall	•	-			-			-	•	-	-	-	-		•
	Rehoboth Ocean Outfall	•	-					-		,	-	•		•		
	WNRWF Upprades	•					-	-	-		-	-				
5 MINDAIE	MNRME Headworks I Ingrades	5-C	10 MGD Max Month	27.5 MGD Peak Hour	\$1.527.571	0-5 5-	10 MGD Max Month	27.5 MGD Peak Hour	\$1,527,571	9 0 0	6.6 MGD Max Month	17.5 MGD Peak Hour	\$1,296,572		6.6 MGD Max Month	17.5 MGD Peak Hour
C INNERVICE		2 H	1		\$2.485.000	E-4	4.6 MGD Max Month	6.9 MGD Peak Hour	\$2,485,000	ទំ	3.6 MGD Max Month	5.4 MGD Peak Hour	\$2,270,000	с Ш	3.6 MGD Max Month	5.4 MGD Peak Hour
T Earon M	Earso Main to IDDMC (Ontion #3)	u u	1	1	\$13 027 250				•	ы 6- Ш	3.6 MGD Max Month	5.4 MGD Peak Hour	\$13,027,250	-		•
	DDM/E Dhace 2 I horizedes	, u		Ļ.	\$20,600,000	(1)	2.9 MGD Max Month	2.9 MGD Max Month	\$10,905,882	ū.	3.7 MGD Max Month	3.7 MGD Max Month	\$20,600,000	Ξ	2.9 MGD Max Month	2.9 MGD Max Month
	DDM/C Dhase 2.0 Parados	Su		+	\$12.700.000		NA	N/A	N/A	F-2	5.2 MGD Max Month	5.2 MGD Max Month	\$12,700,000	•	•	-
	DRWY FIIASE 3A Upglauce		1	7.5 MGD Max Month	\$18,852,459		NA	N/A	N/A	-	6.5 MGD Max Month	6.5 MGD Max Month	\$10,655,738	•	-	•
	Fitase + Opgraues			+-		E-7	4.6 MGD Max Month	6.9 MGD Peak Hour	\$6,967,511	•		1	N/A	E-7	3.6 MGD Max Month	5.4 MGD Peak Hour
L L LOICE M		T				Е-8 Н-8	4.6 MGD Max Month	6.9 MGD Peak Hour	S8.736.587	•	-	-	N/A	е В	•	•
M 200 01					-	-	4.6 MGD Max Month	4.6 MGD Max Month	\$48,410,902	•	-	-	N/A	•	3.6 MGD Max Month	3.6 MGD Max Month
					\$11 250 000				\$500,000	•			\$11,250,000	•		-
14A 10% Contingency	Lanucassinguis 10% Contingency				\$7,531,628				\$3,724,655	•	•		\$6,494,956			-
15% Cor	15% Contingency (Ocean Outfall and									1		1	\$439.500	•	,	
146 Kenopol	14B Renoboth VVVI P Upgrade Unity) 15 Findineering and Administration				\$18,226,540				\$10,628,665	•	•	B	\$16,459,084		-	-
16 Permittin	16 Permitting (5%) Ocean Outfall Only															
									6400 040 774				¢103 £33 100		1	
Total F	Total Project Cost				\$112,324,447				\$100,010,114				\$ 102,020,100	_		

Notes: (1) Ratio of (2,9-2.0)(3,7-2.0) • Phase 2 costs used to approximate reduced upgrade.

	Max Month Flow	
Year 2030	(MGD)	Notes
Sussex County		
NNRWF	4.4	
BRWF	2.9	
feniopen/Dewey	0.9	38% of flow from RBSTP
Subtotal	8.2	Sussex County Flow
City of Rehoboth	1.6	62% of flow from RBSTP
otal	9.8	

% Flow Contributed by Sussex County % Flow Contributed by City of Rehoboth

84% 16%

SUMMARY OF TOTAL CAPITAL COSTS ALTERNATIVES #3 & #4

10/19/09

DRAFT 10/19/09

tem Description	ment Provider	AIL. 3 - K	tehoboth Ocean Ou	tfall Alternative (Coul	Alt. 3 - Rehoboth Ocean Outfall Alternative (County Uses Inland Bays)	AIL 4 - Ken	AIL 4 - RENODOIN OCEAN OUNAIN ANELINANYE (VOUNY OSES INCODOM OVER OUTANY		
Lesuinautres (Total Cost	Table	2030 Design Criteria	2030 Capacity	Total Cost	Table	2030 Design Criteria	2030 Capacity	Total Cost
		×	3.4 Max Month	10.2 MGD Peak Hour	\$900,000		3.4 Max Month	10.2 MGD Peak Hour	\$900,000
	000'0000			-		•	-	•	-
2A Force Main to WNRWF (Option #1)	nnn'nnc'se			· · · ·		E-10	2.1 Max Month	3.2 MGD Peak Hour	\$1,726,000
28 Force Main to Rehoboth (Option #1)				Atron Mark	\$2 930 AAA	-	3.4 Max Month	3.4 Max Month	\$2,930,000
Rehoboth Treatment Upgrades	\$2,930,000	-	3.4 Max Monun	3,4 MIAX MOUNT	52 550 000		-		\$6,160,000
3B Rehoboth FM to Ocean Outfall	•	-		_	21 BUL OO	-	-		\$16,600,000
Rehoboth Ocean Outfall		-	-		000,000,110		4 4 MGD Max Month	4.4 MGD Max Month	\$21,000,000
4 WNRWF Upgrades	-		-		¢1 206 572	9-0	6.6 MGD Max Month	17.5 MGD Peak Hour	\$1,296,572
WNRWF Headworks Upgrades	\$1,296,572	80	6.6 MGU Max Month	1/	410,000,000		2 1 MCD May Month	3.2 MGD Peak Hour	\$1.750.000
WNRWF to IBRWF/PWWP P.S.	\$2,270,000	9 11	2.1 MGD Max Month	3.2 MGD Peak Hour	22,000,000		THIOM YEAR OCH 177		
Ecros Main to IRPWE (Ontion #3)	-	6-Ш	2.1 MGD Max Month	3.2 MGD Peak Hour	\$11,142,250			-	640 00E 080
I DIME There 21 Incredes	\$10,905,882	51	3.7 MGD Max Month	3.7 MGD Max Month	\$20,600,000	(1)	2.9 MGD Max Month	2.9 MGU Max Monun	200,008,014
IDIANT FIRES & OBJECCO	-	F-2	5.0 MGD Max Month	5.0 MGD Max Month	\$12,700,000	-	-	•	-
10 IRPWF Phase 4 Iborades	-	•	•	ari a su summer a su prese tenen de la const destructiones e	-	-	•	_	
11A Force Main to Cave Neck Road	\$6,967,511	•	•	-		-	-	1	r
11B Force Main to ANSIMRE	\$8.736.587	•	,	•	-	*		_	-
12 IPSP Treatment Canacity	\$38,576,359	•	•		n		•	_	
13 li and/Facemente	\$500,000	•	1	-	\$0	-	-	-	CA 272 BAK
14A 10% Contingency	\$3,507,655	•	-	•	\$5,119,882	-		-	010'0 10'10
15% Contingency (Ocean Outfall and					62 GEO 600	,	•		\$2,929,500
14B Rehoboth WWTP Upgrade Only)	\$439,500	-	-	· · · · · · · · · · · · · · · · · · ·	000,000,000		And a second sec		\$15.525.796
15 Engineering and Administration	\$10,469,816	-	-	•	000'C/0'QI \$				\$954.500
16 Permitting (5%) Ocean Outfall Only					000,1006				
	400 000 004	-			\$94 435 010	5			\$87,052,096
Total Project Cost	\$90,999,883				0105001500				

Notes: (1) Ratio of (2.9-2.0)/(3.7-2.0) * Phase 2 costs used to

87068200

m
ф Ю
0
Ð
<u>.</u>
ш
Ö
×
ē
ŝ
ă
Ap
∢

VERSION: Oct 19, 2009: Final Draft of Report

	Rehoboth Capital Costs							DRAFT
	Alternative #1A - RAW WASTEW	- RAW W	ASTEWATER FRO	ATER FROM REHOBOTH WITH EXCESS PUMPED TO IBWRF	TH EXCESS PUN	NPED TO IBWR	Ľ.	10/19/09
ltem	Docorintion	Tahle #	2030 Design Criteria	2030 Capacity	Total Cost	County Costs Share	Rehoboth Cost Share	Rehoboth Cost
No.	linindingan							
			3.4 MGD Max Month	10.2 MGD Peak Hour	\$3.001.000	\$0	100%	\$3,001,000
		2	3.4 MGD Max Month	10.2 MGD Peak Hour	\$3.123.000	\$0	100%	\$3,123,000
ZA		- 4		27.5 MGD Peak Hour	\$1.527.571	\$974,590	36.2%	\$552,981
s S	VVINKVVF Headworks Upgrades	рЦ		6.9 MGD Peak Hour	\$2,485,000	\$1,135,645	54.3%	\$1,349,355
ופ	VVNKVYF (0 IBKVVF TTATISTEL FULLIPILIY JUALUT	чч	4 6 MGD Max Month	6.9 MGD Peak Hour	\$13,027,250	\$5,953,453	54.3%	\$7,073,797
		л У с		3.7 MGD Max Month	\$20,600,000	\$0	100.0%	\$20,600,000
х х	IBKWF Prase Z Upgraues	- с-ц		5.2 MGD Max Month	\$12,700,000	\$5,926,667	53.3%	\$6,773,333
5, 6	IBRAVE Frase 3 Upgraues	J ,		7.5 MGD Max Month	\$18,852,459	\$18,852,459	0.0%	\$0
2				The second s	\$11,250,000	\$0	100.0%	\$11,250,000
2		-	F		\$7,531,628	\$3,284,281	56.4%	\$4,247,347
144	10% Conungency Engineering/Administration	-	E		\$18,226,540	\$7,947,961	56.4%	\$10,278,579
2					\$112,324,447	\$44,075,056		\$68,249,391
					3313	TSOS VINING VESSIS	\$44 075 056	
					2000	DEA COUNTI COST		

	Month	
Elow Solit	Flow	Notes
	(MGD)	
WNRWF	4.4	
IRRWF	<u>2.9</u>	
Subtotal	7.3	
Henlonen/Dewev	0.9	38% of flow from RBSTP
City of Rehoboth/North Shores	1.6 (62% of flow from RBSTP
Total	9.8	

	SPRAY IRRIGATION OPTION	NOPTION	SPRAY IRRIGATION OPTION	ON OPTION
liser Cost Determination	SRF 4.4% for 20 years (from S&W March 2009 Report)	&W March 2009 Report)	1/3 SRF @ 4.4% for 20 years & 2/3 RD @ 5% for 40 years	rs & 2/3 RD @ 5% for s
COSTS DESCRIPTION	Rehoboth + DB, NS & HA	Rehoboth Only	Rehoboth + DB, NS & HA	Rehoboth Only
Annual Capital Cost	\$5,201,385	\$2,929,420	\$4,385,428	\$2,469,873
n Dahoho	0\$	\$0	0\$	\$0
Tiant Operations (From Neucocon march 2002 100-11	\$100.000	\$56,320	\$100,000	\$56,320
Collection Stratom Erom Rehohoth March 2009 Renorth		\$138,735	\$150,000	\$138,735
Collection System 11000 Neurosci march 250 (8/1000 dal)	\$2.286.000	\$1,287,475	\$2,286,000	\$1,287,475
Subsex county Operations and maniferration (verse receiped of the second s		\$4,411,950		\$3,952,403
Projected User Rate for City of Rehoboth		\$1,156		\$1,036

Appendix G: Table G-9	
Appendix G: Table (တ္ပ
Appendix G:	<u>e</u>
Appendix G:	Tab
Appendix	
Appen	dix
Api	Den
	Apl

of Report
Draft
Final
2009:
Oct 19,
SION: 0
VER

			VENDON. Oct 19, 2000. 1 11101 DIGIT VI INPORT		a looka			
	Rehoboth Capital Costs							DRAFT
	Alternative #1 <u>B</u> - RAW WAST	WASTE	EWATER FROM REHOBOTH WITH EXCESS PUMPED TO PRIVATE ANSWERF	ОВОТН WITH EXC	ESS PUMPED TO	O PRIVATE AN	SWERF	10/19/09
ltem No	Description	Table #	2030 Design Criteria	2030 Capacity	Total Cost	County Share	Rehoboth Cost Share	Rehoboth Cost
·01							10001	#2 004 000
•	RESTP Pumping Station	,	3.4 Max Month	10.2 MGD Peak Hour	\$3,001,000	D\$	100%	\$3,001,000
40	1	4	3.4 Max Month	10.2 MGD Peak Hour	\$3,123,000	\$0	100%	\$3,123,000
ç u	1	D-5	10 MGD Max Month	27.5 MGD Peak Hour	\$1,527,571	\$974,103	36.2%	\$553,468
0	VVINTVVF (Teauworks Opgrades)	р 4-П	4 6 MGD Max Month	6.9 MGD Peak Hour	\$2,485,000	\$1,134,457	54.3%	\$1,350,543
0	IVINAVE IO EVVVE TRANSIELI AUDUR CAURT	. (5)	2 9 MGD Max Month	2.9 MGD Max Month	10,905,882	10,905,882	0.0%	\$0
•		F-7	4 6 MGD Max Month	6.9 MGD Peak Hour	\$15,704,098	\$7,169,262	54.3%	\$8,534,836
	FOICE Walls to EVVVE	. «	4 6 MGD Max Month	4.6 MGD Max Month	\$48,410,902	\$22,100,629	54.3%	\$26,310,273
2	-	,		I	\$500,000	\$228,261	54.3%	\$271,739
C1 444	1	-	I		\$3,724,655	\$2,041,197	45.2%	\$1,683,459
4 4 7	Contragency Engineering & Administration	1	1		\$10,628,665	\$5,824,753	45.2%	\$4,803,913
2					7 66 070 0074	6E0 370 E43		CAO 623 324
	Total Project Cost				\$100,010,774	400,010,004		440 ³ 004 ³ 441
Notes:					ollo	SUSSEY CONNTY COST	\$60 378 543	
(1) Ratio	(1) Ratio of (2 9-2 0)/(3 7-2 0) * Phase 2 costs used to approximate reduced upgrade.	đ						

(1) Ratio of (2.9-2.0)/(3.7-2.0) * Phase 2 costs used to approximate reduced upgrade.

Flow Split to PWWP Month Notes Flow Flow Notes WNRWF (4.4-2.3) 2.1 45.7% Wehoboth 2.5 54.3% Subtotal 2.6 54.3% Subtotal 2.6 64.3% Henlopen/Dewey 0.9 38% of flow from RBSTP City of Rehoboth/North Shores 1.6 22% of flow from RBSTP Total 7.1 7.1		VIAX	
4.4-2.3) Flow 4.4-2.3) 2.1 2.1 2.5 2.5 4.6 Dewey 0.9 Doboth/North Shores 1.6 7.1 7.1	Elow Salit to DWWP	Month	Notes
4.4-2.3) 2.1 2.5 Dewey 0.9 Devey 0.9 Devey 1.6 Devey 7.1		Flow	
2.5 4.6 Dewey 0.9 Doboth/North Shores 1.6		2.1	45.7%
4.6 Dewey 0.9 noboth/North Shores 1.6 7.1		<u>2.5</u>	54.3%
0.9		4.6	
1.6	Henlopen/Dewev		38% of flow from RBSTP
	City of Rehoboth/North Shores		62% of flow from RBSTP
	Total	7.1	

SRF 4.4% for 20 years (from S&W March 2009 Report) Rehoboth + DB, NS & HA Rehoboth Only @ 56.32% \$3,782,544 \$2,130,329 \$100,000 \$136,320 \$150,000 \$138,732 \$4,993,200 \$26,326 \$544,500 \$206,652 \$544,500 \$206,652 \$544,500 \$5,442,217		Private Option	Option	Private Option	ption
COSTS DESCRIPTION Rehoboth + DB, NS & HA COSTS DESCRIPTION \$3,782,544 S100,000 \$100,000 COM Rehoboth March 2009 Report) \$4,993,200 CMCD Minimum (\$6.84/1000 gal) \$4,933,200 S100 gal) \$544,500	User Cost Determination	SRF 4.4% for 20 years (from	S&W March 2009 Report)	1/3 SRF @ 4.4% for 20 years & 2/3 RD @ 5% for 40 years	ITS & 2/3 RD @ 5% for IS
COSTS DESCRIPTION \$3.782.544 \$ \$3.782.544 \$ \$100.000 Com Rehoboth March 2009 Report) \$100.000 Com Rehoboth March 2009 Report) \$544,500 (\$1.21/1000 gal) \$544,500 (\$1.21/1000 gal) \$ \$ Subtotal \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Rehoboth + DB, NS & HA	Rehoboth Only @ 56.32%	Rehoboth + DB, NS & HA	Rehoboth Only @
\$3,782,544 \$ \$100,000 \$100,000 om Rehoboth March 2009 Report) \$150,000 \$150,000 \$150,000 \$150,000 \$ \$150,000 \$ \$150,000 \$ \$150,000 \$ \$150,000 \$ \$151,000 \$ \$121/1000 \$ \$121/1000 \$ \$121/1000 \$ \$121/1000 \$					56.32%
S100,000 \$100,000 com Rehoboth March 2009 Report) \$150,000 c MGD Minimum (\$6.84/1000 gal) \$4,993,200 (\$1.21/1000 gal) \$544,500 Subtotal \$544,500	Annual Canital Cost	\$3,782,544	\$2,130,329	\$3,189,165	\$1,796,138
com Rehoboth March 2009 Report) \$150,000 t MGD Minimum (\$6.84/1000 gal) \$4,993,200 \$ (\$1.21/1000 gal) \$544,500 \$ Subtotal \$ \$ \$	Aliliual Vapital 2031. Dumu Station O&M	\$100,000	\$56,320	\$100,000	\$56,320
MGD Minimum (\$6.84/1000 gal) \$4,993,200 (\$1.21/1000 gal) \$544,500 Subtotal \$544,500	Collection System From Rehohoth March 2009 Report)	\$150,000	\$138,735	\$150,000	\$138,735
(\$1.21/1000 gal) \$544,500 (\$1.21/1000 gal) \$544,500 \$544,500 \$544,500 \$540 \$500 \$500 \$500 \$500 \$500 \$500 \$	Collection System 110m Ashooch march 2000 Call	\$4,993,200	\$2,812,170	\$4,993,200	\$2,812,170
Subtotal Subtotal		\$544,500	\$306,662	\$544,500	\$306,662
			\$5,444,217		\$5,110,025
Projected User Rate for City of Rehoboth S1,427	Projected User Rate for City of Rehoboth		\$1,427		91,033

10
ole G-
3: Tab
ndix (
Appe

Alternative #ZA - I reared Entiremt Frkow remodorin Functions to totarty share Rehoboth Cost County share Rehoboth Cost Share Rehoboth Cost Share Rehoboth Cost Share Rehoboth Cost Share Second Cost Share Rehoboth Cost Share Space Share Rehoboth Cost Share Rehoboth Share Share Share <th></th> <th>Capital Costs</th> <th></th> <th></th> <th>1 - 1 - 1 - D</th> <th>AMDME with Even</th> <th>ee to IRP/ME</th> <th></th> <th>10/19/09</th>		Capital Costs			1 - 1 - 1 - D	AMDME with Even	ee to IRP/ME		10/19/09
Table # Z030 Design Criteria Z030 Capacity Total Cost County Share Rehoboth Cost Share RESTP Fumping Station N/A 3.4 Max Month 10.2 MGD Peak Hour \$\$00,000 \$0 100% Reboboth Treatment Plant Impovements D-3 3.4 Max Month 10.2 MGD Peak Hour \$\$00,000 \$0 100% Rehoboth Treatment Plant Impovements D-6 6.6 MGD Max Month 17.5 MGD Peak Hour \$\$2300.000 \$0 100% Rehoboth Treatment Plant Impovements D-6 6.6 MGD Max Month 17.5 MGD Peak Hour \$\$2300.000 \$0 100% Rehoboth Treatment Plant Impovements D-6 6.6 MGD Max Month 5.4 MGD Peak Hour \$\$2.200.000 \$\$0 100% Renoth Cost Rain to IBRWF Transfer Pumping Station E-6 3.6 MGD Max Month 5.4 MGD Peak Hour \$\$2.200.000 \$\$0 0.0% IBRWF Finase 2 Upgrades F-1 3.7 MGD Max Month 5.4 MGD Peak Hour \$\$2.200.000 \$\$0 0.0% IBRWF Finase 2 Upgrades F-1 3.7 MGD Max Month 5.4 MGD Peak Hour \$\$2.200.000 \$\$0 0.0%		Alternative #	<u> #2A - Treat</u>	ed Effluent FRUM Ke	noboth Fumped to				00001001
Description NIA 34 Max Month 102 MGD Peak Hour \$500,000 \$0 100% 100% RWF (Option #1) D-3 3.4 Max Month 102 MGD Peak Hour \$500,000 \$0 100% 100% RWF (Option #1) D-3 3.4 Max Month 102 MGD Peak Hour \$5300,000 \$0 100% 100% Fit Plant Improvements D-6 6.6 MGD Max Month 5.4 MGD Peak Hour \$1,266,572 \$1,296,572 0.0% 100% Kts Upgrades E-5 3.6 MGD Max Month 5.4 MGD Peak Hour \$1,266,572 \$1,296,572 0.0% 117% VF Transfer Pumping Station E-9 3.6 MGD Max Month 5.4 MGD Peak Hour \$13,027,250 \$7,599,229 41,7% 41,7% VF Copion #3) F-1 3.7 MGD Max Month \$5,00000 \$2,430,600 0.0% 0.0% 0.0% VF Copion #3) F-1 3.7 MGD Max Month \$5,00000 \$2,130,000 \$0.0% 0.0% 0.0% VF Copion #3) F-2 5.2 MGD Max Month \$13,027,250 \$1,0000 <t< th=""><th>Iten</th><th></th><th>Table #</th><th>2030 Design Criteria</th><th>2030 Capacity</th><th>Total Cost</th><th>County Share</th><th>Rehoboth Cost Share</th><th>Rehoboth Cost</th></t<>	Iten		Table #	2030 Design Criteria	2030 Capacity	Total Cost	County Share	Rehoboth Cost Share	Rehoboth Cost
Station N/A 3.4 Max Month 10.2 MGD Peak Hour \$900,000 \$0 100% RWF (Option #1) D-3 3.4 Max Month 10.2 MGD Peak Hour \$35,00,000 \$0 100% 100% Ent Plant Improvements D-3 3.4 Max Month 10.2 MGD Peak Hour \$3,500,000 \$0 100% 100% Ent Plant Improvements D-6 6.6 MGD Max Month 17.5 MGD Peak Hour \$3,200,000 \$1,77% 11.00% 11.00% 11.7% F Transfer Pumping Station E-9 3.6 MGD Max Month 5.4 MGD Peak Hour \$2,270,000 \$1,77% 11.7% F Coption #3) F-1 3.7 MGD Max Month 5.4 MGD Peak Hour \$2,270,000 \$1,77% 11.7% F Coption #3) F-1 3.7 MGD Max Month \$7,690,229 \$1,77% 11.7% 11.7% 11.7% 11.7% 11.7% 11.7% 11.7% 11.7% 11.7% 11.7% 11.7% 11.7% 11.2700,000 \$1.0,000 \$1.0,00% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%<	ģ								
Station Station 53,500,000 \$0 100% 100% RWF (Option #1) D-3 3.4 Max Month 10.2 MGD Peak Hour \$3,500,000 \$0 100% 100% RWF (Option #1) D-6 6.6 MGD Max Month 17.5 MGD Peak Hour \$1,296,572 0.0% 17% Rts Upgrades E-5 3.6 MGD Max Month 5.4 MGD Peak Hour \$1,296,572 0.0% 41.7% WF (Option #3) E-7 3.7 MGD Max Month 5.4 MGD Peak Hour \$1,296,572 0.0% 41.7% WF (Option #3) E-9 3.6 MGD Max Month \$1,206,000 \$1,2,700,000 \$1,7% 41.7% VF (Option #3) E-7 3.7 MGD Max Month \$1,206,5738 \$1,07,000 \$1,00,0% 0.0% Pigrades E-7 3.7 MGD Max Month \$1,1250,000 \$2,430,800 88.2% 90,0% Pigrades E-7 3.7 MGD Max Month \$1,1250,000 \$1,0,655,738 \$1,0,00% 0.0% Pigrades E 6.5 MGD Max Month \$1,1250,000 \$0 0.0% 0.			N1/A	3 A Max Month	10.2 MGD Peak Hour	\$900,000	\$0	100%	\$900,000
KWF (Option #1)53630,00050100%100%ent Plant ImprovementsD-66,6 MGD Max Month 17.5 MGD Peak Hour $51,296,572$ 0.0% 41.7% Kr JugradesE-53,6 MGD Max Month $5,4$ MGD Peak Hour $51,324,167$ 41.7% 41.7% F Transfer Pumping StationE-53,6 MGD Max Month $5,4$ MGD Peak Hour $52,300,000$ $51,324,167$ 41.7% WF (Option #3)E-93,6 MGD Max Month $5,4$ MGD Peak Hour $52,300,000$ $51,324,167$ 41.7% WF (Option #3)E-93,6 MGD Max Month $5,5$ MGD Max Month $52,300,000$ $51,324,167$ 41.7% DgradesF-25,2 MGD Max Month $5,5$ MGD Max Month $51,320,000$ $51,27,0000$ 0.0% DgradesF-25,2 MGD Max Month $51,1250,000$ $51,27,200,000$ 0.0% 0.0% DgradesF-25,2 MGD Max Month $51,1250,000$ $51,27,200,000$ 0.0% 0.0% DgradesF-25,2 MGD Max Month $51,1250,000$ $51,27,0000$ 0.0% 0.0% DgradesF-25,2 MGD Max Month $51,1250,000$ $51,27,0000$ 0.0% 0.0% DgradesF-25,2 MGD Max Month $51,1250,000$ $51,27,0000$ 0.0% 0.0% DgradesF-25,2 MGD Max Month $51,1250,000$ $51,13,574$ $44,6\%$ DgradesF-2 $5,000,000$ $51,0,520,731$ $100,0\%$ 0.0% DgradesF-2 $5,000,000$ $51,0,520,731$ 0.0% <	-			2 A Max Month	10.2 MGD Peak Hour	\$3.500.000	\$0	100%	\$3,500,000
Internation D-6 6.8 MGD Max Month 17.5 MGD Peak Hour 51.296.572 51.296.572 0.0% 41.7% F Transfer Hour E-5 3.6 MGD Max Month 5.4 MGD Peak Hour \$1.324,167 41.7% 41.7% F Transfer Hour E-9 3.6 MGD Max Month 5.4 MGD Peak Hour \$1.324,167 41.7% 41.7% WF (Option #3) E-9 3.6 MGD Max Month 5.4 MGD Peak Hour \$1.320,500 \$1.324,167 41.7% 41.7% WF (Option #3) E-9 3.6 MGD Max Month 5.4 MGD Max Month \$1.320,500 \$1.324,167 41.7% 41.7% Pgrades F-2 5.2 MGD Max Month \$5.4 MGD Max Month \$1.320,500 \$1.250,000 \$1.255,738 0.0% 90% Dgrades F-2 5.2 MGD Max Month \$5.0 MGD Max Month \$5.1,550,000 \$1.2,55,738 0.0% 90% Dgrades F-2 6.5 MGD Max Month \$5.0 MGD Max Month \$5.0,600,000 \$5.1,250,000 \$5.1,356,5738 0.0% 90% Dgrades F-2 6.5 MGD Max Month \$5.0,600	2A		3			\$2.930.000	\$0	100%	\$2,930,000
Its and Station E-5 3.6 MGD Max Month 5.4 MGD Feak Hour \$2,270,000 \$1,324,167 41.7% 41.7% WF (Option #3) E-9 3.6 MGD Max Month 5.4 MGD Feak Hour \$31,327,250 \$7,599,229 41.7% 41.7% WF (Option #3) E-1 3.7 MGD Max Month 5.4 MGD Peak Hour \$13,227,250 \$7,599,229 41.7% 41.7% Dgrades F-2 5.2 MGD Max Month 5.4 MGD Max Month \$5,600,000 \$21,200,000 \$0,657 810,655,738 0.0% 90% Dgrades F-2 5.2 MGD Max Month 5.5 MGD Max Month \$5,600,000 \$5,7590 \$7,590,200 0.0% 90% Dgrades F-2 5.2 MGD Max Month \$5,600,000 \$5,7500 \$7,500,000 0.0% 90% Dgrades F-2 5.2 MGD Max Month \$5,600,000 \$5,7500 \$7,00,000 0.0% 90% Dgrades F-2 5.2 MGD Max Month \$5,600,000 \$5,738 0.0% 90% Dccan Outfall and Rehoboth WWTP F \$6,494,956 \$3,	ЗA		e C	A A MGD Max Month	17 5 MGD Peak Hour	\$1,296,572	\$1,296,572	0.0%	\$0
F Iranster Pumping Station E-9 3.6 MGD Max Month 5.4 MGD Feak Hour \$13,027,250 \$7,599,229 41.7% WF (Option #3) E-9 3.6 MGD Max Month 5.4 MGD Feak Hour \$13,027,250 \$7,599,229 41.7% WF (Option #3) F-1 3.7 MGD Max Month 5.4 MGD Max Month \$7,000 \$2430,800 88.2% 88.2% Pgrades F-2 5.2 MGD Max Month 5.2 MGD Max Month 5.2 MGD Max Month \$12,700,000 \$21,200,000 0.0% 90.0% Ipgrades F-2 5.2 MGD Max Month 5.2 MGD Max Month 5.2 MGD Max Month \$12,700,000 \$12,700,000 0.0% 90.0% Ipgrades F-2 5.2 MGD Max Month 5.2 MGD Max Month \$5.0 MGD Max Month \$10,655,738 0.0% 90.0% Ipgrades F-2 5.2 MGD Max Month 5.2 MGD Max Month \$11,250,000 \$10,655,738 0.00% 90.06% 140.00% 90.06% 90.06% 90.06% 90.06% 90.06% 90.06% 90.06% 90.06% 90.06% 90.06% 90.06% 90.06%	2		2 u	2 6 MCD Max Month	5 4 MGD Peak Hour	\$2.270.000	\$1.324,167	41.7%	\$945,833
WF. (Option #3) F-1 3.7 MGD max Month 3.7 MGD max Month 3.7 MGD max Month 8.2,6,600,000 \$2,430,800 88.2% 88.2% Pgrades F-2 5,2 MGD Max Month 5,2 MGD Max Month 5,2 MGD Max Month 0,0%<	ဖ	1		2.0 MCD Max Month	5.4 MGD Peak Hour	\$13.027.250	\$7,599,229	41.7%	\$5,428,021
Dgrades F-2 5.2 MGD Max Month 5.2 MGD Max Month 5.2 MGD Max Month 5.2 MGD Max Month 6.12,700,000 9.12,700,000 0.0% 0.0% Jogrades - 6.5 MGD Max Month 6.5 MGD Max Month 6.5 MGD Max Month 0.0% 0.	~) T	2 7 MGD Max Month	3 7 MGD Max Month	\$20,600,000	\$2,430,800	88.2%	\$18,169,200
Dgrades - 6.5 MGD Max Month 8.11,250,000 5.0 100.0% 100.0% / Ocean Outfall and Rehoboth WWTP \$43,500 \$00,651 44.6% Intration 100.0% Intration 100.0% Intration 5416,459,084 \$8,713,574 47.1% Intration st st st Intration Intratinget Intratinget Intrati	ω	IBRWF Phase 2 Upgrades		S. MOD Max Month	5 2 MGD Max Month	\$12.700.000	\$12,700,000	0.0%	\$0
Dgrades 0.0 Mode Number of Section 50 100.0% Pigrades 56,494,956 \$3,600,651 44,6% Cocean Outfall and Rehoboth WWTP 5 56,494,956 \$3,600,651 44,6% Instration 5 500 \$0,000 \$0 100.0% Instration 5 500 \$0,000 \$0,000 100.0% Instration 5 500 \$0,000 \$0,000 100.0% Instration 5 500,000 \$0,000 \$0,000 \$0,000	თ	_	2-1	S.E. MOD Wax Work	G F MGD Max Month	\$10,655,738	\$10,655,738	0.0%	\$0
(Ocean Outfall and Rehoboth WWTP . . . 6.494,956 \$3,600,651 44.6% (Ocean Outfall and Rehoboth WWTP 100,0% instration 47.1% st 	9		•			\$11.250.000	\$0	100.0%	\$11,250,000
(Ocean Outfall and Rehoboth WWTP 60 100.0% instration 516,459,084 \$8,713,574 47.1% instration 5102,523,100 \$48,320,731 instraction	13	Land/Easements	•			\$6.494.956	\$3,600,651	44.6%	\$2,894,305
- - - 5439,500 \$0 0 dministration - - 516,459,084 \$8,713,574 47.1% Cost - - - 5102,523,100 \$48,320,731 10	14/	A 10% Contingency 15% Contingency (Ocean Outfall and Rehoboth WWTP		A CONTRACT OF A	-		ć	/00 001	\$430 £00
dministration - - \$16,459,084 \$8,713,574 47.1% Cost - - - 5402,523,100 \$48,320,731 1	145		1	ı		\$439,500	0¢	0.001	000,000
Total Project Cost \$48,320,731 \$	14	5 Upgtade Utity/ Encineering/Administration			1	\$16,459,084	\$8,713,574	47.1%	\$7,745,509
	2					\$102.523.100	\$48.320.731		\$54,202,369
		Total Project Cost							
									3

Flow Split		Notes	
WNRWF	4.4		
IBRWF	<u>2.9</u>		
Subtotal	7.3		
Hanlonen/Dewey	0.9	38% of flow from RBSTP	
City of Rehoboth/North Shores	1.6	62% of flow from RBSTP	
Total	9.8		
		SPRAY IRRIGATION UP TION	ION OF HON

	SPRAY IRRIGATION OPTION	ON OPTION	SPRAY IRRIGATION OPTION	ON OPTION
User Cost Determination	SRF 4.4% for 20 years (from S&W March 2009 Report) 1/3 SRF @ 4.4% for 20 years & 2/3 RD @ 5% for 40 years 40 ye	&W March 2009 Report)	1/3 SRF @ 4.4% for 20 years 40 years	rs & 2/3 RD @ 5% for s
COSTS DESCRIPTION	Rehoboth + DB, NS & HA	Rehoboth Only	Rehoboth + DB, NS & HA Rehoboth Only	Rehoboth Only
Annual Canital Cost	\$4,130,841	\$2,326,490	\$3,482,823	\$1,961,526
tions (Erom Dohoho		\$895,488	\$1,590,000	\$895,488
Plant Operations (FIOIII Actionou) march 2009 Report		\$138,735	\$150,000	\$138,735
Collection System Front Renoucing the 2003 hepoty		\$506,880	\$900,000	\$506,880
Sussex county Operations and Maintenance (#2.00 1000 gur)		\$3,867,593		\$3,502,629
Broiected liser Bate for City of Rehoboth		\$1,014		\$918

÷
Ģ
Table
ö
Appendix

sport	
Draft of Re	
009: Final	
Oct 19, 20	
VERSION: 0	

			VERSION. Oct 19, 4	VERSION. Oct 13, 2003. I IIIAI DIAIL OI INCOUL	Inchor c			
	Rehoboth Capital Costs							DRAFT
	Alternative #2B - TREATED WASTEWATER FROM REHOBOTH WITH EXCESS PUMPED TO PRIVATE ANSWERF	ED WAS	FEWATER FROM R	EHOBOTH WITH E	XCESS PUMPED	TO PRIVATE	ANSWERF	10/19/09
Item	Description	Table #	2030 Design Criteria	2030 Capacity	Total Cost	County Costs	Rehoboth Cost Share	Rehoboth Cost
No					000 000	04	100%	3900 000
-	RBSTP Pumping Station	A/N A	3.4 Max Month	10.2 MGD Peak Hour	\$3 500 000	O\$	100%	\$3.500.000
Z	Force Main to WNRWF (Option #1)	?		10.4 MOD 1 Cav 1001	\$2,930,000	\$0	100%	\$2,930,000
3A	Rehoboth I reatment Upgrades	e C	S & MGD Max Month	17 5 MGD Peak Hour	\$1.296.572	\$1,296,572	0.0%	\$0
م ا	VVNRVVF Headworks Upgraues	р и Ц	3.6 MGD Max Month	5 4 MGD Peak Hour	\$2.270,000	\$1,323,410	41.7%	\$946,590
90		5	2 9 MGD Max Month	2 9 MGD Max Month	\$10,905,882	\$10,905,882	0.0%	\$0
×			3 6 MGD Max Month	5 4 MGD Peak Hour	\$15.704.098	\$9,155,489	41.7%	\$6,548,609
11A			3.6 MGD Max Month	3.6 MGD Max Month	\$38,576,359	\$22,490,017	41.7%	\$16,086,342
12	PWWP I reatment Capacity				\$500.000	\$291,500	41.7%	\$208,500
13	Land/Easements 10% Contingency		· · · · · · · · · · · · · · · · · · ·	1	\$3,507,655	\$2,297,285	39.6%	\$1,210,370
£	-			ľ	\$439.500	0\$	100.0%	\$439,500
14B 15	Upgrade Only) Engineering & Administration				\$10,469,816	\$6,328,423	39.6%	\$4,141,393
	Total Project Cost				\$90,999,883	\$54,088,580		\$36,911,303
Notes:	ero مـ مـ مـ مـ ۲.۵ ۵، • Phase 2 costs used to approximate reduced updra	e e			SUS	SUSSEX COUNTY COST	\$54,088,580	00000
Notes: (1) Ratio	Notes: (1) Batio of (2) 9-2 (0)(3 7-2 (0) * Phase 2 costs used to approximate reduced upgrade.	ė			SUS	SEX COUNTY (SOS	

(1) Ratio of (2.9-2.0)/(3.7-2.0) * Phase 2 costs used to approximate reduced upgrade. Notes:

Flow Split to ANSWERF Month Notes WNRWF (4.4-2.3) 2.1 45.7% With the second s		Мах		
Flow 2.1 2.1 2.5 2.1 7.1	Flow Split to ANSWERF	Month	Notes	
) 2.1 2.5 2.5 2.5 2.5 0.9 0.9 North Shores 1.6 7.1		Flow		
2.5 4.6 North Shores 1.6 7.1	WNRWF (4.4-2.3)		45.7%	
4.6 0.9 North Shores 1.6	Rehoboth		54.3%	
0.9 North Shores 1.6 7.1	Subtotal	4.6		
North Shores 1.6 7.1	Henionen/Dewev	0.9	38% of flow from RBSTP	
	City of Rehoboth/North Shores		62% of flow from RBSTP	
	Total	7.1		

	Private Option	Dation	Private Option	ption
User Cost Determination	SRF 4.4% for 20 years (from	SRF 4.4% for 20 years (from S&W March 2009 Report)	1/3 SRF @ 4.4% for 20 years & 2/3 RD @ 5% for 40 years	rs & 2/3 RD @ 5% for rs
	Rehoboth + DB, NS & HA	Rehoboth Only @ 56.32% Rehoboth + DB, NS & HA	Rehoboth + DB, NS & HA	Rehoboth Only @
COSTS DESCRIPTION				56.32%
A Carifal Part	\$2.813.064	\$1,584,318	\$2,371,770	\$1,335,781
Annual Capital Cost Tractional Disut OSM Erom Dehohoth March 2009 Renort)	\$1.590,000	\$895,488	\$1,590,000	\$895,488
- 1 9	\$150.000	\$138,735	\$150,000	\$138,735
CONSCION SYSTEM FIGHT RENDOUT MARCH 2002 100 000	\$4.993.200	\$2,812,170	\$4,993,200	\$2,812,170
	\$0	\$0	\$0	\$0
Sussex county Oaim Subtotal		\$5,430,711		\$5,182,174
Protected liser Rate for City of Rehoboth		\$1,423		\$1,358

2
7
0
<u>e</u>
a
2
Ő
Ģ
e
ð
₹

of Report
Draft
Final
2009:
oct 19,
VERSION: O
2

Dohohoth Canital Costs		VERSION. Oct					DRAFT
Activity capital costs Alternative #3 - REHOBOTH OU	IOBOTH (DUTFALL ALTERNA	ITFALL ALTERNATIVE WITH COUNTY CONTINUING TO PUMP TO IBWRF	Y CONTINUING	TO PUMP TO I	BWRF	10/19/09
Description	Table #	2030 Design Criteria	2030 Capacity	Total Cost	County Cost	Rehoboth Cost Share	Rehoboth Cost
nesuipuoi		6					
	VI/V	3 A May Month	10.2 MGD Peak Hour	\$900,000	\$0	100%	\$900,000
RBSTP Pumping Station		0.4 Mov Month	3 4 Max Month	\$2 930 000	\$0	100%	\$2,930,000
Rehoboth Treatment Upgrades	•	0.4 IVIGA VIULIUI		\$2 560 000	\$0	100%	\$2,560,000
Rehoboth FM to Ocean Outfall	,		and the second s	\$14 RUN DON	\$0	100%	\$14,800,000
Rehoboth Ocean Outfall	•			\$1 206 572	\$1 296 572	0.0%	\$0
WNRWF Headworks Upgrades	φ ή			\$2 000 000	\$2,000,000	0.0%	\$0
WNRWF to IBRWF/PWWP P.S.	ρq		3 2 MGD Peak Hour	\$11 142 250	\$11.142.250	0.0%	\$0
Force Main to IBRWF (Option #3)	р, т Ц L		3 7 MGD Max Month	\$20,600,000	\$20,600,000	0.0%	\$0
IBRWF Phase 2 Upgrades	- c L L	5.7 Migu Max Month	5 0 MGD Max Month	\$12,700,000	\$12,700,000	0.0%	\$0
IBRWF Phase 3A Upgrades	7			\$0.	\$0	0.0%	\$0
Land/Easements	•	1		\$5.119.882	\$4,773,882	6.8%	\$346,000
10% Contingency				\$2,659,500	\$0	100.0%	\$2,659,500
15% Contingency (Ocean Outfall and Rehoboth WWIP Upgrade Unity)	grade Unly)		1	\$16.875.805	\$11,552,795	31.5%	\$5,323,010
Engineering & Administration	•	a second a s	-	\$851,000	\$0	100.0%	\$851,000
Permitting (5%) Ocean Outrall Only				\$94,435,010	\$64,065,500		\$30,369,510
Total Project Cost							

Notes	45.7%	54.3%		36.0%	64.0%		
Max Month Flow			4.6	0.9	1.6	7.1	
Flow Split	MINRWF (4 4-2 3)	Rehnhoth	Subtotal	Hanlonen/Dewey	City of Rehohoth/North Shores	Total	

\$64,065,500

SUSSEX COUNTY COST

				Droisctad I lear Rate for City of Rehoboth
\$581		\$635		
2411,112,26		\$2,422,232		Subtotal
00			\$0	Sussex County Operations and Maintenance (\$2.00/1000 gal)
			\$150,000	Collection System From Rehoboth March 2009 Report)
\$138 735	\$150 000	04100 70E		
\$84,480	\$150,000	\$84,480	\$150,000	
\$895,488	\$1,590,000	\$895,488	\$1.590.000	Crom Dohoho
\$1,099,040	\$1,951,421	\$1,303,529	\$2.314.504	Annual Canital Cost
56.32%				COSTS DESCRIPTION
Rehoboth Only @	Rehoboth + DB, NS & HA	Rehoboth Only @ 56.32%	Rehoboth + DB, NS & HA	
8	years		•	User Cost Determination
s & 2/3 RD @ 5% for 40	1/3 SRF @ 4.4% for 20 years & 2/3 RD @ 5% for 40	009 Report)	SRF 4.4% for 20 years (from	
shoboth Only	Outfall Option Rehoboth Only		Outfall Option Rehoboth Only	

<u></u>
Ъ.
ē
ab
F.
Q
÷
en
d
∢

VERSION: Oct 19, 2009: Final Draft of Report

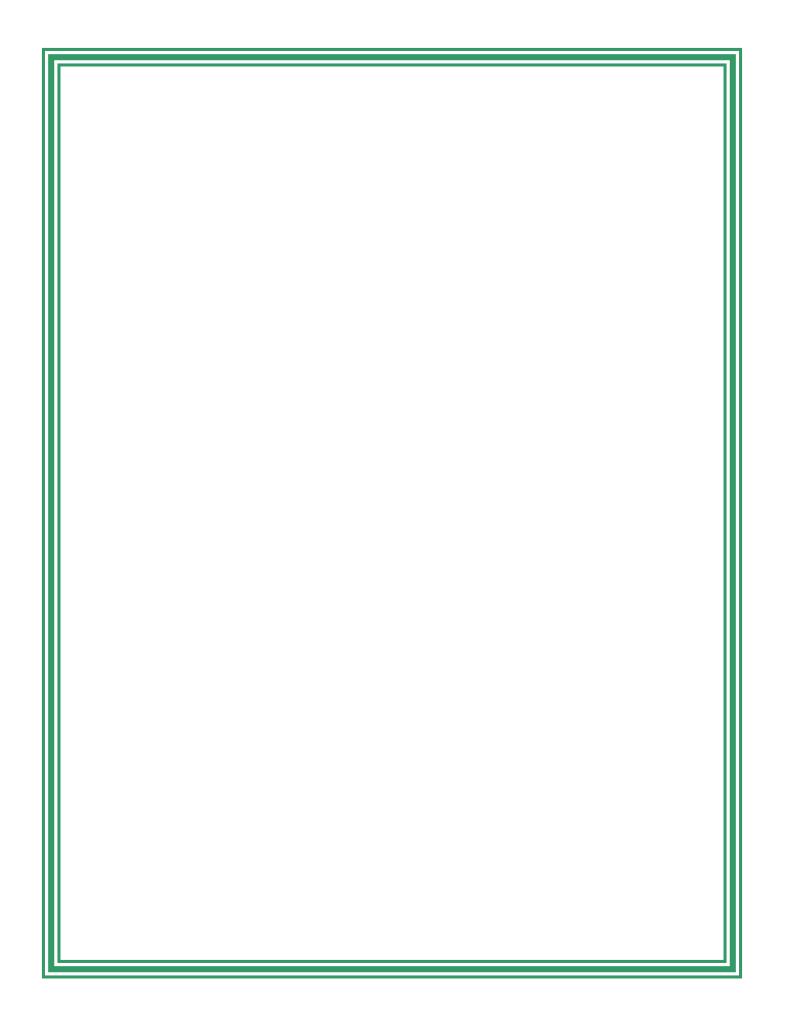
	n state Control		VERSION: Oct 13, 2003: FINAL DIALON NEPOL	נטטש: דוחמו בומוניט	linday			DRAFT
	Kenoboln Capital Custs				TIO NE VIII			10/10/00
	Alteri	<u>ative #4</u>	Alternative #4 - COMBINED REHOBOTH AND COUNTY OCEAN OUTFALL	OBOTH AND COU	NIY UCEAN UUI	ILALL		10/13/03
Item		Table #	2030 Design Criteria	2030 Capacity	Total Cost	County Cost	Rehoboth Cost Share	Rehoboth Cost
No.	nascription							
			2 A Max Month	10.2 MGD Peak Hour	\$900,000	\$0	100%	\$900,000
-	RBSTP Pumping Station	, ,	0.1 Max Month	3.2 MGD Peak Hour	\$1.726.000	\$1,726,000	%0	\$0
2B	Force Main to Rehoboth (Option #1)	2	2.4 May Month	3.4 Max Month	\$2.930.000	\$0	100.0%	\$2,930,000
ЗA	Rehoboth Treatment Upgrades	*	0.4 IVIAN INULUL		\$6,160,000	\$2.812.174	54.3%	\$3,347,826
8 B	Rehoboth FM to Ocean Outfail	4	8	-	\$16,600.000	\$7,578,261	54.3%	\$9,021,739
ပ္တ	Rehoboth Ocean Outfall		A A MCD Max Month	4 4 MGD Max Month	\$21.000.000	\$21,000,000	0.0%	\$0
4	WNRWF Upgrades		e e MCD Max Month	17 5 MGD Peak Hour	\$1.296.572	\$1,296,572	0.0%	\$0
ۍ	WNRWF Headworks Upgrades	2	0.0 MOD Max Month	3.2 MGD Peak Hour	\$1.750.000	\$1,750,000	0.0%	\$0
ဖ	WNRWF to IBRWF/PWWP P.S.	-	2.1 MOD Max Month	2 9 MGD Max Month	\$10.905.882	\$10,905,882	0.0%	\$0
ω	IBRWF Phase 2 Upgrades				\$0.	\$0	0.0%	\$0
13	Land/Easements	•	—		\$4.373.845	\$3,949,063	9.7%	\$424,783
14A	-	1	-		\$2 929 500	\$1,136,739	9.7%	\$1,792,761
14B	_	rade Unly)			\$15 525 796	\$11.474.032	26.1%	\$4,051,764
15	Engineering & Administration	,	1		\$954.500	\$435,750	54.3%	\$518,750
16	Permitting (5%) Ocean Outfall Only				¢87 052 096	\$64.064.474		\$22,987,623
	Total Project Cost				401,502,000			
Notes:					SIIS	SUSSEX COUNTY COST	\$64,064,474	
ALL Datio	11. The second state of the second state and the approximate reduced updrade.	e.						

(1) Ratio of (2.9-2.0)/(3.7-2.0) * Phase 2 costs used to approximate reduced upgrade.

Notes
45.7%
54.3%
0.9 38% of flow from RBSTP
62% of flow from RBSTP
62%

N SRF 4.4% for 20 years (from S&W March 2009 Report) 1/3 SRF @ 4.4% for 20 years N Rehoboth + DB, NS & HA Rehoboth Only @ 56.32% Rehoboth + DB, NS & HA N Rehoboth + DB, NS & HA Rehoboth Only @ 56.32% Rehoboth + DB, NS & HA Annual Capital Cost \$1,751,920 \$3986,681 \$1,477,091 Annual Capital Cost \$1,590,000 \$895,488 \$1,590,000 booth March 2009 Report) \$1,590,000 \$84,480 \$1,590,000 New O&M \$1,590,000 \$84,480 \$1,590,000 booth March 2009 Report) \$150,000 \$84,480 \$1,500,000 New O&M \$150,000 \$138,735 \$150,000 \$150,000 booth March 2009 Report) \$138,735 \$150,000 \$150,000 \$150,000 Subtotal \$50 \$50 \$50 \$150,000 \$138,735 \$150,000 Subtotal \$50 \$50 \$50 \$50 \$50 \$50		Outfall Ontion Rehoboth and Sussex	whoth and Sussex	Outfall Option Rehoboth and Sussex	ooth and Sussex
It Determination 40 year COSTS DESCRIPTION Rehoboth + DB, NS & HA Rehoboth Only @ 56.32% Rehoboth + DB, NS & HA COSTS DESCRIPTION \$1.751,920 \$986,681 \$1.477,091 Annual Capital Cost \$1.751,920 \$986,681 \$1.477,091 Ions (From Rehoboth March 2009 Report) \$150,000 \$884,480 \$156,000 Statem From Rehoboth March 2009 Report) \$150,000 \$84,480 \$156,000 stations and Maintenance (\$2.00/1000 gal) \$150,000 \$834,480 \$156,000 Stations and Maintenance (\$2.00/1000 gal) \$150,000 \$150,000 \$156,000 Stations and Maintenance (\$2.00/1000 gal) \$150,000 \$150,000 \$156,000 Subtotal \$150,000 \$138,735 \$150,000 Subtotal \$150,000 \$150,000 \$150,000		SRF 4.4% for 20 years (from	S&W March 2009 Report)	1/3 SRF @ 4.4% for 20 yea	rs & 2/3 RD @ 5% for
Costs Description Rehoboth + DB, NS & HA Rehoboth Only @ 56.32% Rehoboth + DB, NS & HA Costs Description Annual Capital Cost \$1,751,920 \$986,651 \$1,477,091 Ions From Rehoboth March 2009 Report) \$1,590,000 \$8895,488 \$1,590,000 Stem From Rehoboth March 2009 Report) \$150,000 \$8895,488 \$1,590,000 Stem From Rehoboth March 2009 Report) \$150,000 \$84,480 \$150,000 Stem From Rehoboth March 2009 Report) \$150,000 \$84,480 \$150,000 Stem From Rehoboth March 2009 Report) \$150,000 \$138,735 \$150,000 Stem From Rehoboth March 2009 Report) \$150,000 \$138,735 \$150,000 Stem From Rehoboth March 2009 Report) \$150,000 \$138,735 \$150,000 Subtotal Subtotal \$50 \$2,005,384 \$150,000 \$138,735 \$150,000	User Cost Determination			40 yea	5
COSTS DESCRIPTION \$1,751,920 \$386,681 \$1,477,091 Annual Capital Cost \$1,551,920 \$386,681 \$1,590,000 Ions (From Rehoboth March 2009 Report) \$1,590,000 \$815,000 \$155,000 \$155,000 \$156,000 \$150,000 </td <td></td> <td>Rehohoth + DB. NS & HA</td> <td>Rehoboth Only @ 56.32%</td> <td>Rehoboth + DB, NS & HA</td> <td>Rehoboth Only @</td>		Rehohoth + DB. NS & HA	Rehoboth Only @ 56.32%	Rehoboth + DB, NS & HA	Rehoboth Only @
Annual Capital Cost \$1,751,920 \$986,681 \$ ions (From Rehoboth March 2009 Report) \$1,590,000 \$895,488 \$ \$ New O&M \$1,590,000 \$895,488 \$ <					56.32%
Annual Contraction St. 550,000 \$895,488 \$	Annual Canital Cast	\$1 751 920	\$986,681	\$1,477,091	\$831,898
Ions From Rehoboth March 2009 Report) \$150,000 \$84,480 \$150,000 \$84,480 \$150,000 \$84,480 \$150,000 \$84,480 \$150,000 \$81,60,000 \$81,60,000 \$81,60,000 \$150,000 \$81,60,000	Allillual Capital Cost	\$1 590 000	\$895.488		\$895,488
stem From Rehoboth March 2009 Brown 2000 \$138,735 Secretions and Maintenance (\$2.00/1000 gal) \$100 \$100 \$100 \$100 \$100 \$100 \$100 \$10	tions (From Kenoboui Iviai cii zu	\$150,000			\$84,480
stem From Rehoboth March 2009 Keport) #100,000 Derations and Maintenance (\$2.00/1000 gal) #100,000 Subtotal \$2,105,384 Subtota		\$150,000			\$138,735
berations and Maintenance (\$2.00/1000 gal) \$0 \$0 Subtotal \$2,105,384 \$2,105,384	Collection System From Rehoboth March 2009 Report	000,001 \$			C#
Subtotal \$22,10	Supervision and Maintenance (\$2,00/1000 gal)	\$0	DA		¥.
	Substations and managements of Subtofal		\$2,105,384		\$1,950,601
			\$562		\$511

4
5
G
<u>e</u>
lab
Ë.
ö
ŝ
÷6
č
ď
9
4


			VERSION. Oct 13, 4	VERSION. Out 13, 2003. I IIIAI DIAIL OI INCOUL	school s			
	Rehoboth Capital Costs							DKAFI
	Alternative		3 - COMBINED REH	#4B - COMBINED REHOBOTH AND COUNTY OCEAN OUTFALL	ITY OCEAN OU	TFALL		10/19/09
Item	Docceletion	Tahle #	2030 Design Criteria	2030 Capacity	Total Cost	County Cost	Rehoboth Cost Share	Rehoboth Cost
ò Ż			2					
			3 d Max Month	10 2 MGD Peak Hour	\$900,000	\$0	100%	000'006\$
-		ц С	o 1 May Month	3.2 MGD Peak Hour	\$1.726.000	\$1,726,000	%0	\$0
2B	Force Main to Kenopotn (Uption #1)	2	3.4 Max Month	3 4 Max Month	\$2.930.000	\$0	100.0%	\$2,930,000
ЗА	1				\$6,160,000	\$3,636,627	41.0%	\$2,523,373
gg	1	1			\$16.600.000	\$9,800,000	41.0%	\$6,800,000
ဗ္ဂ	T	•	A A MCD Max Month	4 MGD Max Month	\$21.000.000	\$21,000,000	0.0%	\$0
4	WNRWF Upgrades	۲	A A MCD Max Month	17 5 MGD Peak Hour	\$1.296.572	\$1,296,572	0.0%	\$0
2	WNRWF Headworks Upgrades	2	0.0 MCD Max Month	3.2 MGD Peak Hour	\$1,750.000	\$1,750,000	0.0%	\$0
9	WNRWF to IBRWF/PWWP P.S.		2 0 MCD Max Month	2 9 MGD Max Month	\$10.905.882	\$10,905,882	0.0%	\$0
8	IBRWF Phase 2 Upgrades	+		,	\$0	\$0	0.0%	\$0
13		•		1	\$4.373.845	\$4,031,508	7.8%	\$342,337
14A	1	Colo Color			\$2.929.500	\$1,470,000	7.8%	\$1,459,500
148		and Cirily			\$15.525.796	\$12,235,650	21.2%	\$3,290,146
15	-				\$954,500	\$563,500	41.0%	\$391,000
16					\$87,052,096	\$68,415,739		\$18,636,357

VERSION: Oct 19, 2009: Final Draft of Report

SUSSEX COUNTY COST \$68,415,739

	Max	
Flow Split to Outfall	Month	Notes
	Flow	
WNRWF (4.4-2.3)	4.9	59.0%
Rehohofh	3.4 2	41.0%
Subtotal	8.3	
/Dewev	0.9	
City of Rehoboth/North Shores	1.6	62% of flow from RBSTP
Total	10.8	

I I sor Cost Determination	Outfall Option Rehoboth and Sussex	both and Sussex	Outfall Option Rehoboth and Sussex	ooth and Sussex
	F 4.4% for 20 years (from	SRF 4.4% for 20 years (from S&W March 2009 Report)	1/3 SRF @ 4.4% for 20 years & 2/3 RD @ 5% for 40 years	rrs & 2/3 RD @ 5% for rs
COSTS DESCRIPTION	Rehoboth + DB, NS & HA	Rehoboth Only @ 56.32%	Rehoboth + DB, NS & HA	Rehoboth Only @ 56.32%
Annual Canital Cost	\$1.420.304	\$799,915	\$1,197,496	\$674,430
otione (Erom Bahoho	\$1.590,000	\$895,488	\$1,590,000	\$895,488
	\$150.000	\$84,480	\$150,000	\$84,480
Call Street Carm Bahabath March 2008 Banorth	\$150 000	\$138.735	\$150,000	\$138,735
Collection System From Renoval Mainter 2003 (Neport)	0\$	80	\$0	\$0
Sussex county Operations and maintenance (******* Subtotal		\$1,918,618		\$1,793,133
Projected User Rate for City of Rehoboth		\$503		\$470

